STEREOID: an Earth Explorer 10 mission candidate to observe land, ice, and ocean dynamics

Paco López-Dekker F.LopezDekker@tudelft.nl

STEREOID for Earth Explorer 10

Leau II				
	Lopez-Dekker, Paco, Associate Professor	Delft University of Technology		(ACFO)
Propo	sing Team	arth Observation (ACLO),		
	Name	Affiliation	Country	Proposals submitted in the
1	Chapron, Bertrand, Dr.	Ifremer	FR	he procedures followed by
2	Gommenginger, Christine, Dr.	National Oceanography Center	GB	
3	Johnsen, Harald, Dr.	NORUT	NO	
4	Collard, Fabrice, Dr.	Oceandatalab	FR	tember 2017 (cf. ESA/PB-
5	Hansen, Morten, Dr.	Nansen Environmental and Remote Sensing Center (NERSC)	NO	lember 2017 (
6	Korosov, Anton, Dr.	Nansen Environmental and Remote Sensing Center (NERSC)	NO	
7	Rott, Helmut, Dr.	ENVEO IT	AT	
8	Nagler, Thomas, Dr.	ENVEO IT	AT	id down in the Call, been
9	De Zeeuw – van Dalfsen, Elske, Dr.	KNMI	NL	
10	Hooper, Andy, Professor	University of Leeds	GB	
11	Hanssen, Ramon, Professor	Delft University of Technology	NL	a signific papels
12	Poland, Mike, Dr.	US Geological Survey	US	port of two scientific paners.
13	Menenti, Massimo, Professor	Delft University of Technology	NL	total of 32 external experts.
14	Su, Zu (Bob) Prof.	University of Twente	NL	technical and programmatic
15	Tebaldini, Stefano, Assistant Professor	Politecnico di Milano	IT	ryation Programmes and the
16	Larsen, Yngvar, Dr.	NORUT	NO	a corriging the seven
17	Prats-Iraola, Pau, Dr.	DLR	DE	s carried out using the
18	Zurita, Albert, Ing	Airbus Defence and Space, Spain	ES	
19	Esposito, Marco	Cosine	NL	a il ilita laval i a

ACEO recommends three Mission Ideas for further assessment studies at pre-feasibility level, i.e.

phase 0 study (without order of priority), namely STEREOID, Daedalus and G-CLASS:H2O.

Space-segment (in proposal)

Platform

- < 500 kg
- Which is small for an Earth Explorer

Mission phases: variable formation

- Stereo formation
 - Maximum line-of-sight diversity
 - Best for surface current vectors and 3-D surface deformation

Mission phases: variable formation

- XTI formation
 - Close-formation (TanDEM-X style)
 - Intended for DEM time-series
 - 400 m to 1 km baselines
- ATI formation
 - 100 m to 200 m along-track separation

One slide of history

Retrospective slide: #SESAME EE9

200 km

the SESAMES:

- 300-500 kg class satellites
- **Receive only** payload with dual antenna solution to suppress ambiguities
- do only what needed: no phase synchronization nor tight formation with S1

Sentinel-1: Used as illuminator of opportunity: no interference with Sentinel-1 mission

ŤUDelft

Formation flying optimizes to different applications/ROIs: mission organized in phases. 8

Science objectives

Mission objectives (1 min overview)

Solid Earth

- 3D surface deformation (volcanic, seismic, landslides)
- Sudden topographic changes

Cryosphere

- Glacier and ice sheets topography/volume/mass change
- High resolution ice flows/deformation
- Sea ice drift and topography
- Marginal Ice Zone variability

Oceans

- High resolution surface currents and wave data for coastal processes
- Small-scale (100 m to 10 km) ocean dynamics
- Surface deformation field (∇ · TSCV) Divergence/strain, vorticity, shear
- Extreme weather events

Common theme

Science objectives: cryosphere

- 1. Topography change of glaciers, ice caps and outlet glaciers of ice sheets \rightarrow volume change \rightarrow contribution to sea level rise
- 2. 3-D deformation and flow dynamics of ice sheets and glaciers
- 3. Sea ice
 - Instantaneus drift
 - Thickness and roughness

4. Marginal Ice Zone (MIZ) mesoscale variability

Science objectives: cryosphere (proposal version)

	Short description	ESA challenge
SC-1	Quantify the temporal change of volume and mass of glaciers, ice caps and outlet glaciers of ice sheets and their contribution to sea level change	C2
SC-2	Study the 3-D deformation and flow dynamics of ice sheets and glaciers to better understand their stability and dynamic response to climate change	C1
SC-3	Measure instantaneous sea ice drift velocity and deformation, improve estimations of sea ice roughness and thickness in support of sea ice model development, to improve operational forecast and mass balance studies.	C3
SC-4	Quantify sea ice and Marginal Ice Zone (MIZ) mesoscale variability	C3
TUD	elft	

Ice loss in mountain glaciers

$\Delta DEMs$ for mass balance

Annual change in surface elevation (dh/dt) for Antarctic Peninsula outlet glaciers by means of TanDEM-X DEM Differencing

2011 to 2013 dh/dt (m a⁻¹) -2.5 _-A -5.0 -7.5 -10.0 SN -12.5 20 km

2013 to 2016

Measurement principle

- Single-pass cross-track interferometry
 - No temporal decorrelation
 - Virtually no atmospheric errors
 - Large and reconfigurable baselines

- Challenges/limits
 - Baseline changes along orbit
 - Precise baseline knowledge
 - System-level phase errors: synchronization
 - Penetration depth

DEM performance example: SESAME, 100m resolution

Single Acquisition

ŤUDelft

Yearly average

Main open issue (remote sensing wise): penetration depth

TSX tomographic image over lake Vostok

ŤUDelft

Science objectives: oceans

- 1. High resolution surface currents and wave data to validate and develop models for coastal processes
- 2. Characterize and quantify small-scale (100 m to 10 km) ocean dynamics
- 3. Measure the surface deformation field (gradients TSCV)
 - Divergence/strain
 - Vorticity
 - Shear
- 4. Improve our understanding of air-sea interactions
- 5. Extreme weather events

TIR + radar rationale

The value of resolution (for example, vorticity)

M. Lévy et al./Ocean Modelling 34 (2010) 1-15

Radial velocities measured by Sentinel-1

ŤUDelft

26

Main open issue: (wind) wave bias

• Problem:

$$v_{\text{Doppler}} = v_{\text{Wave-Bias}} + v_{\text{TSC}}$$

- Approaches being studied
 - Measure waves \rightarrow estimate bias
 - Estimate wind from backscatter \rightarrow model waves \rightarrow estimate bias
 - Exploit polarimetric dependency of wave-bias

Extreme weather [Stereo]

#IrmaHurricane2017

Squint angles (top view)

Squint angles

ŤUDelft

System Sensitivity (ideal retrieval)

3 km resolution

- 6 m/s wind
 - 250 km separation

System Sensitivity (ideal retrieval)

- 3 km resolution
- 6 m/s wind
 - 350 km separation

System Sensitivity (ideal retrieval)

• 3 km resolution

- 6 m/s wind
 - 350 km separation

Main sources of systematic (non-geophysical) errors

	DCA	Short-ATI	Long-ATI		
Sentinel-1 pointing	Mispointings				
Companion mispointing	weighted by 1/beamwidths				
Formation knowledge			Leads to ATI phase offset		
Oscillator frequency offsets	Is a point of c	of concern, but seems technically solved			
	But emphasis	on gradients			
U Delft	We can mostly liv systemat	ve with low-pass ic errors			

Science objectives: solid Earth

- 1. Monitor 3D surface
 - co-seismic, inter-seismic, and post-seismic deformation;
 - tectonic rifting;
 - volcanism;
 - landslides.
- 2. Topographic changes (volume!) due to volcanic and landslide activity

Geometry-diverse DInSAR

3D deformation

- Along track separation of 250 km
- Performance over 5 years
- Product resolution 100m x 100m
- $\tau = 40$ days, $\gamma_0 = 1$, $\gamma_\infty = 0.15$
- Troposphere power 1 cm²
- Only Sentinel-1 A (12 days repeat)

Up-Down accuracy (mm/year)

From polarimetry to... multistatimetry?

Airborne SAR System of DLR, X-Band, fully polarimetric

Neu-Gablonz, Bavaria, Germany

Very limited empirical experience with multistatic data

Formation flying: cross-track baseline knowledge

• LOS baseline error translates directly into phase error:

Phase synchronization

Frequency and phase synchronization always a critical issue.

Carrier frequency and phase synchronization: lessons we think we have learnt

- GPS tagging/disciplining Sequency offsets
- Data driven (AutoSync, etc) Selative phase errors
 - Often good enough
 - Issues for sure
- Explicit synchronization link
 - Two way synchronization between receivers needed

Echo window synchronization

Imaging performance: NESZ (Imaging mode)

NESZ generally adequate to good
Probably a bit less gain in exchange of wider elevation

beams would be

- better. • Or SCORE
- + 3dB for ATI mode

Imaging performance: AASR (imaging mode)

- AASR in -17 to -18 dB range.
- Quite good given small total antenna area
- Sub-swath variability due to Sentine-1 PRFs

Imaging performance: RASR

- RASR < -20 dB
- Good, but we need to accommodate large dynamic ranges (varying wind conditions)
- Misalignment between pattern footprint and iso-Doppler lines

Range ambiguities Doppler shifted (need to account for range-azimuth ambiguities)

Outlook (1/2)

- We have a (very strong) MAG
 - "UK" members: Juliet Biggs (U. Bristol & COMET), Andy Hooper (U. Leeds & COMET), Julienne Stroeve (UCL).
 - First meeting in January
- ESA in process of preparing Phase-0/A ITTs
 - Preliminary MRD and SoW being discussed just now at ESA.

Outlook (2/2)

- No technical show-stoppers up to know
- We are sure that we would produce good science
- Some level of scientific prioritization needs to happen
 - Multi-purpose nature both a strength and a weakness
 - For selection we need compelling but also simple story line.
- We need to formulate & justify mission requirements

