

Instrumentation for 1 to 5THz Heterodyne Sounders

Brian Ellison

STFC – Rutherford Appleton Laboratory Space Department Millimetre Wave Technology Group

Presentation Outline

- Why THz Remote Sounding?
- Fundamental THz Detection Techniques
- High-resolution THz Heterodyne Spectroscopy
- Basic THz Heterodyne Terminology
- Innovative 1 to 5THz Remote Sounding Concept LOCUS
 - Proposed Mission Description
 - Payload Technical Concept
 - Related UK Core Technology
 - In-Orbit Demonstration Concept
 - Mission Development Plan
- Summary

Why Use Terahertz Remote Sounding?

- THz frequencies (submm-waves) penetrate dielectric media opaque at most other shorter wavelengths.
- Can detect and characterise molecular species through obscurants and located in a relatively low temperature environment.
- Offers resolution higher spatial than microwave/mm-wave range.
- Allows remote sounding of atmospheric constituents related to climate change on a local or global basis.
- Same technique provides information on the ٠ interstellar media, e.g. regions of star formation.

Barnard68

atmosphere (UARS MLS)

RAL Spa

CIO

THz Detection Techniques

- Two primary passive detection types:
 - Coherent and Incoherent.
- Both methods measure the source brightness temperature, be it continuum or spectral emission.
- Coherent (amplifiers and frequency mixers):
 - o Ultra-fine spectral resolving power.
 - o Phase information preserved.
 - o Room temp. or cryogenic instrumentation.
- Incoherent (e.g. bolometric and photo-conductive):
 - o Broad spectral range.
 - o Relatively simple technology.
 - o Phase information lost.
 - o Usually cryogenic.
- Detection method chosen mostly depends upon the scientific application.

High Spectral Res. Spectroscopy

Heterodyne Detection

Simplified Heterodyne Radiometer

Optimum system performance requires:

- Efficient signal frequency translation, i.e. low conversion loss.
- Minimal added system electrical noise.
- Provision of adequate THz LO source power.

Heterodyne receiver converts THz input signal to a lower intermediate frequency (IF) range – typically GHz.

Frequency translation allows final detection and interrogation of input signal.

Provides low noise and high spectral resolving power - order >>10⁴.

Key front-end components are the mixer and THz local oscillator (LO).

RAL & STAR Dundee 350GHz Het. Radiometer - CEOI

30/04/2014

THz Heterodyne Terminology

Normally use Rayleigh-Jeans approximation:

Brightness = $2kT_{source}/\lambda^2$

Can represent radiometer performance in terms of noise equivalent system temperature by the relationship:

Noise Power = k T_{svs} per unit bandwidth

and the minimum detectable signal is determined by:

$$\Delta T_{\text{source}} \approx T_{\text{sys}} / (\tau . \Delta f)^{1/2}$$

To achieve the best instrument sensitivity we need to:

Minimise T_{m_i} Lm and T_{IF} and Maximise τ and Δf .

Note that τ and Δf are often observation dependent.

k= Boltzmann's constant, τ = integration time and Δf = spectral resolution.

Planck Radiation Curve Ref: Kraus Radio Astronomy

Departure form R-J approximation should to be considered at frequencies >>1THz, and for low brightness temp. source.

1 to 5 THz Remote Sounder

Low Cost Upper-atmosphere Sounder - LOCUS

- Breakthrough concept multi-terahertz remote sounder -

Compact payload flown on a 'standard' small satellite that will:

- Measure key species in the upper atmosphere, i.e. the mesosphere and lower thermosphere (MLT).
- Increase understanding of natural and anthropogenic effect on climate change.
- Allow study of the 'gateway' between the Earth's atmosphere and near space environment.

LOCUS science achieved through:

- Tracing O, OH, NO, CO, O₃, H₂O, HO₂, O₂ spectral emission signatures globally and from low Earth orbit (LEO)
- Using a limb sounding technique with cold space as a background to achieve height distribution.
- Provision of ultra-high spectral resolution (1MHz).
- Accurate spatial sampling with ~2km footprint at tangent heights from ~ 55km to 150km.

Small satellite sounder from LEO

Sp ecies	Transition Frequency (THz)		
0	4.745		
OH	3.544		
HO2	3.543		
	3.544		
NO	1.153		
	1.153		
CO	1.152		
0 ₂	0.773		

Example species frequency list

LOCUS Payload Concept

- Highly integrated multi-channel THz radiometer system.
- Four separate bands identified that accommodate the required spectral windows
- Schottky semiconductor diode mixer technology.
- Quantum Cascade Laser used a LOs for 1 and 2, harmonic up-conversion for 3 and 4.
- Fast Fourier Transform digital spectrometers provide 1MHz spectral resolution.
- Single primary ~ 40cm diameter and miniature coolers 100K operational goal.
- UK sourced technology with critical elements support by the CEOI and NERC.

30/04/2014

LOCUS Core UK Technology

In Orbit Demo. - Satellite Concept

Objective: Prove core payload and platform technology in space.

- Polar sun synchronous orbit.
- Perform global species measurement.
- Novel approach to scene scanning via spacecraft nodding.
- Cold-space view and on-board c300K target provide payload cal.
- Approx. <u>total</u> spacecraft volume, mass & power: 1m³, 150kg, 70W.
 - Compare with NASA AURA @ 43m³, 3tonne, 4kW & MLS: ~8m³, 500kg, 550W)
- IOD mission lifetime ~ 2 years, tbc.

Designation	Band Centre (THz)	Primary Target Species	System Noise (K)	NEAT (K)
Band 1	47	0	80,000	46
Band 2	3.5	OH	20,000	12
Band 3	11	NO, CO	3,500	2
Band 4	0.8	02	2,500	15

Summary of radiometer band performance. NE Δ T assumes 1MHz res. and 3s integration. System assumed cooled to operational temperature of 100K

Example spectra. D. Gerber, RAL

Schematic of LOCUS concept aboard SSTL150 small satellite

30/04/2014

Mission Concept Development Plan

ESA IOD Study Programme (SSTL PI):

- Science refinement.
- Payload concept definition.
- Spacecraft concept definition.
- Mission plan and cost estimate.

NERC Critical Component Development (RAL PI):

- QCL development and waveguide demo.
- THz Schottky diode development.
- Integrated QCL & Schottky proof of concept.

CEOI-ST Critical Payload Development (Leeds PI):

- 1.1 THz (Band 3) full development inc.
 - o Mixer, LO and spectrometer.
- QCL frequency stabilisation.

Summary

- THz remote sounding provides important information in relation to the Earth's climate evolution and its monitoring.
- The THz detection method depends upon the nature of the defined science return.
- Where the science requires high spectral resolution and high sensitivity, THz heterodyne detection is the instrumentation of choice.
- In the 1 to 5THz frequency range, novel heterodyne instrumentation is being conceived and developed that will allow novel scientific study.
- A UK initiated and presently majority UK funded instrument, LOCUS, is being developed to study the relatively unexplored supra-THz spectral range.

LOCUS Team Members

Thanks for listening

