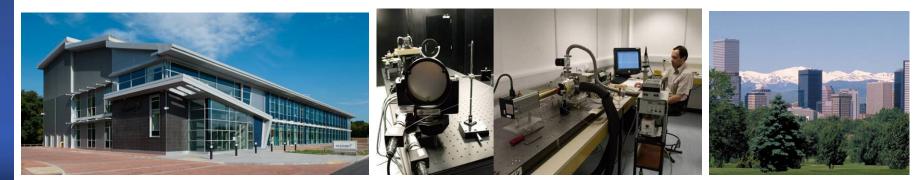


Space Imaging Optical Technology Challenges

Dr Mike Cutter Business Development Manager

CEOI Technology Workshop, April 2014

Contents


- Company Background
- Key optical technology areas
 - Earth imagers
 - Earth science
- Summary

SSTL - The Company

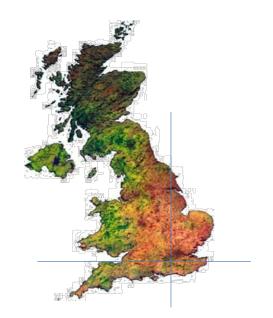
UK satellite manufacturer is owned by 99% Airbus S&D 1% University of Surrey

Since 1985, employing ~620 staff Facilities in Surrey, Kent, Hampshire & Colorado

The Kepler Building

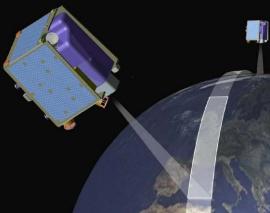
SSTL's technical facility with offices, stores, laboratories, manufacturing, hi-bay clean rooms and testing

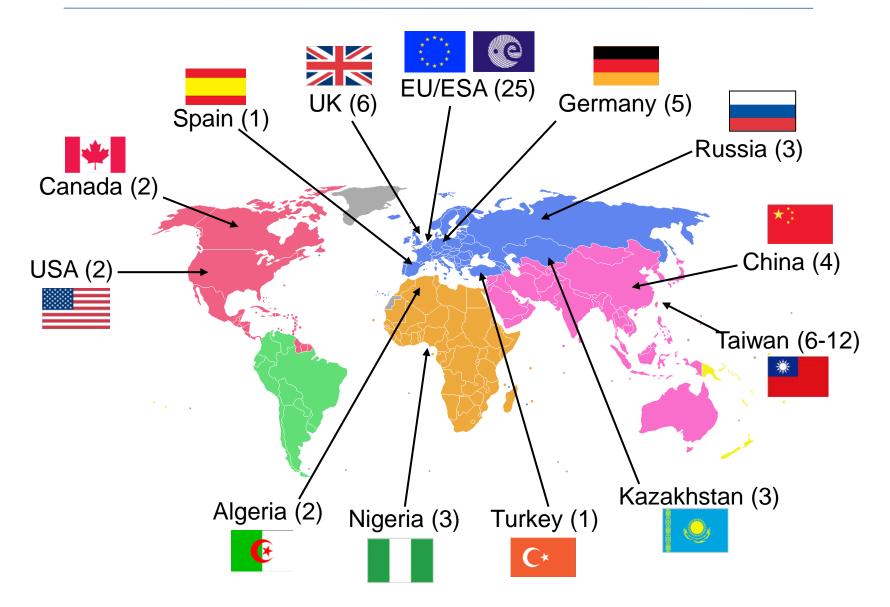
SURR



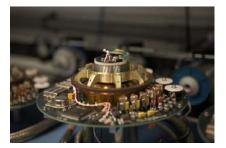
Changing the Economics of Space

This is achieved through:


Rapid manufacture using advanced terrestrial technologies



SSTL is an **Exporter**



*Major contracts (2003-) : platform, payload or complete mission

Development & Manufacturing Strategy

• Assess market

- Typical customer budgets
- Key price points
- Performances requirements

Momentum wheel

- Development & Manufacturing strategy
 - Build on heritage to minimise risk & schedules
 - Adopt iterative development approach
 - New developments qualified in orbit in earlier missions
 - Adopt system approach to development:
 - payload
 - on-board processors
 - avionics (sensors, actuators, controllers & software)
 - downlink
 - power systems
 - structures.
 - Reduce size of supply chain: to control schedules & margins
 - Aim for rapid schedules to control costs
 - Optimise specifications to address risk, schedule & costs

41 satellites completed, 19 further satellites in progress, 27 payloads in progress

EO Imager Development

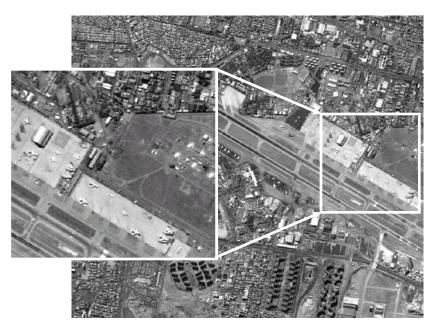
SSTL 100 - Compact Modular Platform


Key parameters:

- Three spectral bands
- 32 & 22m GSD
- 600km swath width
- 5-year design life
- Butane propulsion
- High speed downlink (X-Band)
- Platform mass 100kg

Microsat-70 (14 missions) SSTL-100 (8 missions) AlSat-1 Bilsat NigeriaSat-1 UK-DMC Deimos-1 UK-DMC2 ADS-1B NigeriaSat-X

SSTL-150

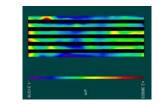

New Developments:

- Carbon fibre structure
- Mirror mounting techniques
- Active focusing mechanism

Key parameters:

- Panchromatic band
- 4m GSD
- 24km swath width
- Xenon Propulsion
- 3-axis attitude control
- High speed downlink (X-Band)

Tehran Airport 2006


SSTL-300i

New Development:

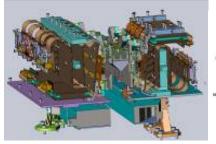
- Multi-element co-planar focal plane
- Antenna pointing mechanism
- Momentum wheels & strategy

	and the second second	And and a second second second		and the second se	and the second second
-	-		-0		
-					 -
-		11			 10
-	22		-0		
-			••		 =
			_		

Key parameters:

- 2.5m Pan 20km swath
- 5m 4-band multispectral, 20km swath
- 32m 4-band multispectral 320km swath
- Xenon Propulsion
- 3-axis attitude control
- 32GB on-board storage
- 210 Mbps X-band downlink

Burj Khalifa, Dubai


SSTL-300S1 Imager

Key parameters:

- 1m Pan, 22.6km swath
- 4m 4-band multispectral, 22.6km swath
- 3-axis attitude control & highly agile
- 544GB on-board storage
- 500 Mbps X-band downlink
- 57,000 sq.km per day

- Optical design
- TDI detectors
- Complex focal plane assembly
- New focusing mechanism

Simulated S1 image

SSTL-X50 – series of 50kg microsats Earthmapper 22m GSD Wide swath **TrueColour** 10-15m GSD Wide swath Precision 2.5m GSD NIR R G pan

Key platform parameters: 3-axis attitude control

3-axis attitude control 32 GB minimum on-board storage 80-160 Mbps X-band downlink

SWIR

NIR

R

G

New Developments:

B

New avionics suite (FIREWorks) Automated production & test processes & techniques inc. pick & place & re-flow Multi-spectral & SWIR imagers

G

R

B

Future image developments - SSTL X-300

- Future developments
 - Reduced platform mass (20-30%)
 - New avionics derived from X-series (faster build cycle)
 - Higher downlink capability (Ka or optical?)
 - Improved spatial performance (ground sampling $\leq 0.5m$)
 - Novel image processing techniques
 - Sparse apertures?

N2 LW Mirror 385mm dia.

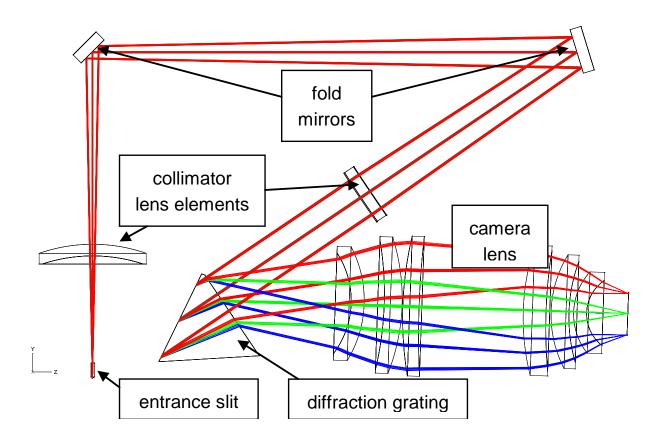
Gooch & Housego LW Mirrors 150mm & 80mm dia.

Short Summary of Earth Science Technologies

High Resolution - Spectrometer Technologies

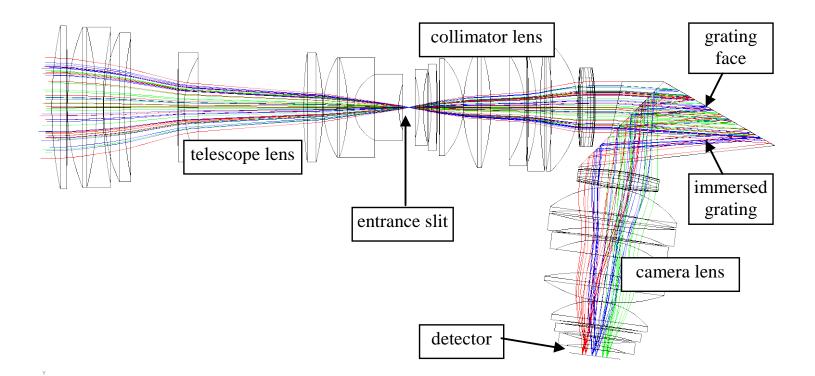
Technology approach:

- Conventional spectrometers ($\Delta \lambda \ge 1$ nm) gratings/prisms but long. High spectral resolution ($\Delta \lambda \le 1$ nm) immersed diffraction gratings.
- Immersed gratings receive & diffract light in a refracting media
- They give higher angular dispersion than gratings in air/vacuum. Reduces the size of the optical system by the refractive index and this tends to produce a mass of approx. $1/L^3$

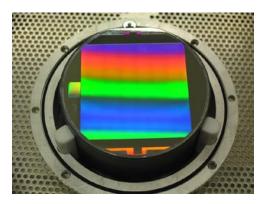


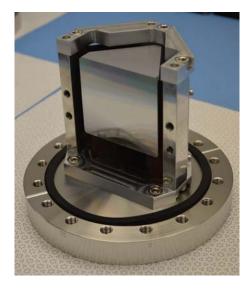
SWIR-1 reference scene radiances 1.E+12 ^2.sr.nm) 1.E+12 8.E+11 ph/(s. 6.E+11 4.E+11 2.E+11 0.E+00 1590 1610 1630 1650 1670 wavelength, nm

CHRIS Hyperspectral Imager

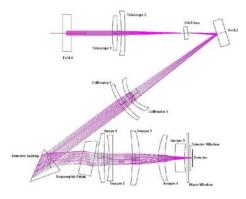

Short-wave IR spectrometer design

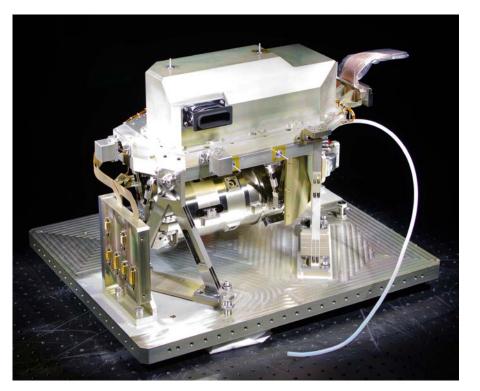
- Spectral range: 2308nm to 2385nm, for CH₄ and CO
- Spectral resolution 0.25nm
- Grating aperture: 25mm x 50mm



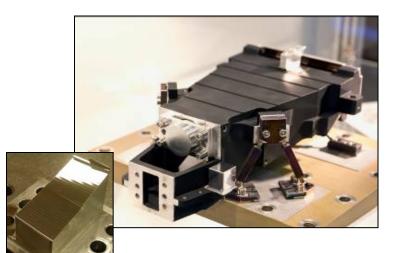

High-resolution spectrometer design for FLEX

- Spectral range: 745nm to 775nm (O_2A band)
- Spectral resolution 0.1nm
- Aperture: 100mm diameter (80mm along-track)



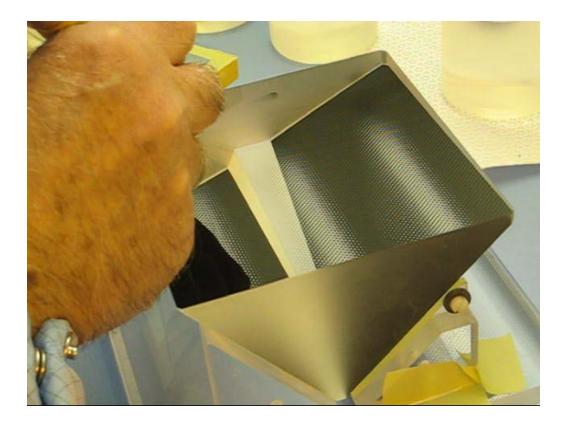

Immersed grating technologies (1)

SRON Silicon Immersed Gratings


TROPOMI SWIR Spectrometer

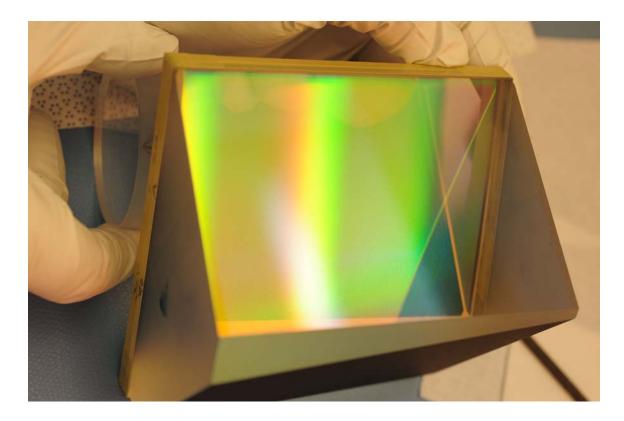
Summary

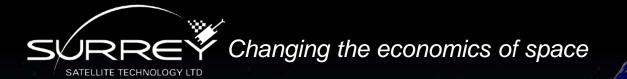
- SSTL provides a range of optical instruments;
 - High resolution optical imaging systems
 - Earth observation science payloads
 - Space science instruments (IFU JWST)
- Solutions can be challenging & require a mix of engineering technologies
 - Optical design
 - Mechanisms
 - Detector technology (visible IR)
 - Lightweight mirrors & structures


EarthCARE MSI

Micro-slicer

JWST NIRSpec IFU


Immersed grating technologies (2)


The magic of the optical contact technique grating supplied by Horiba (Jobin Yvon)

Immersed grating technologies (3)

The magic of the optical contact technique grating supplied by Horiba (Jobin Yvon)

Thank you

© Surrey Satellite Technology Ltd.

0

Tycho House, 20 Stephenson Road, Surrey Research Park, Guildford, Surrey, GU27YE, United Kingdom Tel: +44(0)1483803803 | Fax: +44(0)1483803804 | Email: info@sstl.co.uk | Web:www.sstl.co.uk