Cryogenics and Magnetics Group

Miniature Closed Cycle Coolers used in Earth Observation and Astronomy

Tom Bradshaw Martin Crook Geoff Gilley Tom Rawlings Steve Watson Matt Hills CEOI Leicester 30th April – 1st May 2014

Copyright STFC, Rutherford Appleton Laboratory 2014

Closed Cycle Refrigerators for Space

- Development at STFC Rutherford Appleton Laboratory has been ongoing for nearly 30 years
- Based on long life diaphragm spring technology flexure bearings
- Licensed to industry in the UK and the states
 - Technology flown on many missions ATSR series etc.. Used for weather forecasting
- Used to underpin UK involvement in a variety of space missions with RAL Space

80K Single stage
Has run for 18.6 yrs at 40Hz
> 2.3 x 10¹⁰ cycles

Design features

- Flexures are used with clearance seals between pistons and wall
- No rubbing surfaces
- No life limiting features

Credits:

BNSC

ESA/CCLRC/RAL/NERC/

Results

• This type of cooler has been flown on many types of mission

Sea Surface Temperature (K)

272 273 275 276 278 280 281 285 285 286 288 290 291 293 295 296 298 300 301 503 30

Normal Year

Sea Surface Temperature (K)

272 273 275 276 278 280 281 285 286 288 290 291 293 296 298 296 300 301 503 305

1997/01

El Niño Year

Summ	ary of UK Cryocool	ers produc	edfor Fligh	nt and Qual	ification Pro	gramme	s		09/05/2010			
UK Cooler Type	Instrument/ Satellite or Customer	Launch Date	Switch on date	End Service	Op. years per Cooler	Accum. years for all coolers	#TM coolers	# Other Coolers	Use of other coolers/ nstrumentModel	Current Status		
Oxford/RAL 80K	ISAMS/UARS	Sep-91		Jul-92	1.8	3.6	1	1	FM spare	Decommissioned 2005		
Oxford/RAL 80K	Lifetest	N/A		Restarted	18.6	18.6		1	Lifetest	Lifetime exceeded		
RAL 80K - head to head	ATSR-1/ERS-1	Jul-91		Mar-00	8.6	8.6	1			Mission complete		
Astrium(BAe) 80K*	Qual&LifeTest/ESA	N/A			8.1	8.1		1	QM	Lifetime exceeded		
Astrium(BAe) 80K	HTSSE-VNRL	Nov-93		Nov-93	0.2	0.2	1	1	EM	Orbit not achieved		
RAL 80K - head to head	ATSR-2/ERS-2	Apr-95		Feb-08	12.8	12.8	1			Decommissioned Feb 2008		
Astrium(BAe) 80K	IMG/Adeos	Aug-96		Jun-97	0.9	1.8	1	1	EM	Satellite failed		
7.	HTSSE-IVNRL- Argos	Feb-99		Aug-00	1.5	1.5	1	ୀ	EM	Mission completed		
	JPL, TRW, ESA, Fujitsu, GSFC, Rockwell, Hughes				1.1	13.8		13	Evaluation	Nominal operation (latest reports) - average operational years/cooler		
	MOPITT/CSA		Jan-92		0.2	0.4		2	EQM	Testing complete, now in use at CSA for pulse tube testing		
Astrium 50-80K Stirling*	MOPITT/Terra	Dec-99	02-Mar-00	Ongoing	10.1	20.1	2	1	FM spare	Mission extended (2011), system failure affected 1 displacer	- A	
	Qual&Life Test/ESA	N/A		Restarted	6.9	<mark>6.9</mark>		1	QM	Lifetime exceeded		
-	SMR/ODIN	Feb-01	24-Feb-01	Ongoing	9.2	9.2	1			Mission extended (Dec.2009)		
-	MIPAS/ENVISAT	Mar-02	09-Mar-02	Ongoing	8.0	16.0	2	2	EQM	Mission extended (2011 possibly to 2014))		
-	AATSR/ENVISAT	Mar-02	11-Mar-02	Ongoing	8.2	16.5	2	1	FM spare	Mission extended (2011)		
Batch 2	SPINTEGRAL	Nov-02	14-Oct-02	Ongoing	7.3	29.2	4	2	FM spare	Mission extended (Dec.2010)		
Batch 3a	Military – A /CNES	Jun-05		Ongoing	5.4	10.7	2	2	EM	Last report nominal		
Batch 3b	Military – B /CNES	Dec-09		Ongoing	0.1	0.1	2		QFM	Launched successfully		
Batch 4a	SLSTR/S3A	TBD		Pre-CDR			2	2	EM	EM/PFM build in progress		
Batch 4b	SLSTR/S3B	TBD		Pre-CDR			2		FM			
RAL/Astrium 4K J-T	Planck	May-09	21-May-09	Ongoing	1.0	1.2	2	2	FM Spare	Commissioned 21-May-09, Cooldown achieved 02-Jul09		
Astrium 20-50K	Qual&LifeTest/ESA	N/A		Rebuild	0.5	1.2		2	QM, DM	After restarting programme, lifetesting now scheduled to start mid 2010		
High Power 50-80K (ESA Adv.50-80K)	N/A	N/A		CDR						ESA approval of CDR expected shortly		
TOTALS = 124 flight quality mechanisms 113.1 183.5 27 36 = 63 flight quality systems												

Space 2. Astrium/RAL Coolers

Courtesy of Andrew Gibson (slightly out of date)

Picture: ESA/AOES Medialab

Cosmic Microwave Background measurements

The Planck Spacecraft

RAL supplied the 4K cooler

The Planck Spacecraft

Compressors (inside magnetic shielding on the left), Gas cleaning panel (lower right) and electronics (upper left) on the satellite panel

The Planck Spacecraft

Pipework inside the satellite

 Low pressure side of the JT expansion measured at ambient

Technolog

- With no pressure drop the temperature inferred from this should match the temperature measured at the cold end
- Pressure drop down low pressure side ~ 0.013 bar calculated ~12mK
- Not sure why difference is greater after SCS switchover
- Increased heat load after dilution finishes?

Day 676 (565 on graph) orbit manoeuvre Day 677 (566 on graph) Solar flare Day 975 (864 on graph) He3 on dilution runs out Day 1092 (981 on graph) He4 on dilution starts to run out Day 1135 (1024 on graph) OOL on 4K modulus of imbalance

Advanced 2K Cooler Programme

ECHO Study on a Neon JT Cooler

- Neon has been suggested as a refrigerant in a Joule-Thomson system on EChO – MPt 24.56, BPt 27.1K
- The inversion curve is a locus of maximum cooling on expansion of the gas
- For Neon some pre-cooling is required

Argon

Neon

- To achieve a temperature of ~27K requires a return pressure ~1bar
- As a baseline feasibility study we looked at the use of an existing two stage compressor design that would provide a moderate inlet pressure of ~12bar

	Bottom HX	Middle HX	ЈТ НХ	JT effect	Cond	Total
293	-1018.9				-6.7	-1025.6
100	1078.1	-436.I			6.7	648.7
45		593.I	-48.7		0.8	545.I
28				-203.5	0.1	-203.4

All power quoted in the table are mW, -ve figures indicate cooling

Parameter	Value					
frequency	40Hz					
fill pressure	4.5bar					
stroke	5.5mm (max=7mm)					
total input	95W					
power						
P high	l2bar					
P low	0.9bar					
mass flow	35mg/s					
piston sizes	l st stage 24mm, 2 nd stage					
	I4mm					
spring rate	2-3N/mm					

ECHO Study on a Neon JT Cooler

- Assume pre-cooling is available at 100 and 45K
- A flow of 35mg/s is required for 200mW of cooling at 27K
- The mass flow rate of 35mg/s implies a volumetric flow of 38 x 10⁻⁶ m³/s at 1.1 bar and 293K.
- The required operating parameters are well within the capabilities of the two stage design. Going to a four stage compressor set could give benefits.

A health warning must be applied to these figures!: The heat exchangers are not optimised; We need to look at the effect of increasing the high pressure with more compression stages (currently using 12 bar); etc... This is a first cut indication that the use of Neon is feasible

Four stage compressors being designed for ESA 2K cooler programme – EChO would use half of these (or all four if more stages are desirable)

A Small Scale Cooler for use at 80K

ESA contract 4000102281/10/NL/SFe

T.W. Bradshaw, S.A. Brown, M.R. Crook, G. Gilley, S. Watson

STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX110QX, UK

T Tirolien ESTEC

martin.crook@stfc.ac.uk Space Cryogenics Workshop, ESTEC 2013

SMALL SCALE COOLER PRODUCT SPECIFICATION

Mass (excluding CDE)	580g		
Size Envelope (excluding DCE)	144 x 61 x 9	3mm	
Input power (750mW@77K, +20°C rejection)	15W		
Input power (750mW@77K, -20°C rejection)	10W		
Operating environment range	-30°C to +50	D₀C	
Lifetime	>50 000hrs	DISCLAII margins of however that mode is not alw indicator performa	MER – there are on these figures, experience dictates elled performance rays a good of actual nce!

A NEW CLOSED CYCLE COOLER FOR SPACE APPLICATIONS

T. W. Bradshaw, M.R. Crook, G Gilley, T Rawlings STFC, Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX, UK.

C. Cheuk, <u>P.Iredale</u>, J. Moore Honeywell Hymatic, Burnt Meadow Road, Redditch, B98 9HJ, UK.

S. Mitchell, <u>B.Olivier</u> and M. Townend Systems Engineering & Assessment Ltd, Building 660, Bristol Business Park, <u>Coldharbour</u> Lane, Bristol, BS16 1EJ, UK.

Science & Technology Facilities Council

Rutherford Appleton Laboratory

Space Cryogenics Workshop ESTEC December 2013

- 50K with 2.4W cooling
- Active Temperature Control (±2mk over 10s, ±25mk over 10 min)
- Vibration minimisation for all harmonics below 500Hz
- Efficiency (minimise system power consumption)
- Reliability (redundant configuration)
- Power Conditioning (Bus emissions) (to reduce Conducted Emissions to acceptable levels)
- Being industrialised at the moment

LOCUS – Low Cost Upper atmosphere Sounder

Demonstrator Limb sounding multichannel radiometer mission in THz region (see Brian Ellison talk)

Requirement is for ~3W at 50K with a stability of +/-50mK – can achieve this with ~ 115W total input power

LOCUS

First steps will be to use an existing cooler

Standard rack with height ~200mm

Components required:

- Balanced JT stage compressors
- Balanced Stirling compressors
- Displacer/JT unit with space for quantum devices
- Control electronics
- Power Supply Unit
- Gas cleaning system

Quantum Devices

- Requirement for a compact, rack mounted 4K cooler although could configure for 3K or ~2K
- Uses are for superconducting devices for single photon counting and quantum cryptography
- Potentially a large market for these devices
- Taking the cost out of space developed hardware
- Bid into EPSRC as part of Quantum Hub development
- Suitable for use on an aircraft

ATSR2 picture of the UK+

Future Opportunities in Earth Observation

Host of other instruments making measurements

- Future satellites are in the ESA GMES Global Monitoring for Environment Security campaign
- Sentinel I-6 some are payloads on other satellites
- Meteosat Third Generation

.....All use Cryogenics !

THE END

BRITISH CRYOGENIC CLUSTER

