Mid-Infrared Laser Heterodyne Systems From Earth Observation to Security and Defence

Damien Weidmann

Science & Technology Facilities Council Rutherford Appleton Laboratory

Outline

Ø Laser Heterodyne Radiometer (LHR)

- Earth Observation rationale
- Principles and capabilities
- Hollow waveguide miniaturization
- Security & Defence applications
 - Capability Gap
 - Adapting LHR to the problem
 - Early demonstration
 - Prospects

Earth Observation Needs LHR capabilities well aligned

Atmospheric composition measurements

- Finer geographical coverage
- Better vertical resolution
- Improved sensitivity
- From light and compact platforms

- **Ø** Laser heterodyne radiometer (LHR)
 - High sensitivity in the thermal and far IR
 - Ultra-high spectral resolution -> vertical profiling
 - Ultra-high spatial resolution (< mrad)

Laser Heterodyne Radiometer Passive – Laser is only local oscillator

Vertical Profile Measurements

Solar occultation ground based

HOLLOWGUIDE LTD

Prof. Mike Jenkins

Miniaturization Hollow waveguide integration

Trace Chemical Remote Sensing EO vs. Terrestrial (Security & Defence)

- **Ø** EO from space
 - Long paths
 - Thermal contrast

- Short plume
- Highly localized
- No thermal contrast
- Low vapour pressure

Requirements

Strict performance criteria

- Multi-species identification and quantification
- High sensitivity (ppb)
- Detection ranges > 50 m
- Rapid response times (seconds to minutes)
- Eye-safe operation
- Compact and portable design
- Cost effectiveness

SOLUTION: CREATE THE CONTRAST -> MAKE THE LHR ACTIVE

LHR becomes ACLaS

Typical Detection Scenario Active Coherent Laser Spectrometer

Benefits of ACLaS

Inherit advantages of LHR + new ones

First System – First Spectrum Nitrous Oxide

Rutherford Appleton Laboratory

Long Range Tests (up to 50 m) Hydrogen Peroxide and Nitrous Oxide

Current Normalised Detection Limits

Conclusions & Prospects

Adapting EO oriented instrumental development into terrestrial sector for standoff detection

Most sensitive Standoff detection/identification system fulfilling operational requirements

- Several orders of magnitudes to gain in sensitivity
- Miniaturization under way (field deployment)
 - Direct benefits from CEOI programme
- Increased spectral agility
- Range resolution

Further spinning out in environmental monitoring

- What and how much is getting out of this chimney stack?
- Urban tomography

Acknowledgements

Mike Jenkins
Neil Macleod
Rebecca Rose

Science & Technology Facilities Council

