

BAE SYSTEMS

CEOI 5th and 6th Open Calls Final Review

Level 1 On-Board Processing for Squinted SAR

Stephen Brown, Kehinde Latunde-Dada, Alex Wishart Astrium Ltd Steven Blythe, Trevor Macklin, Peter Meadows BAE SYSTEMS

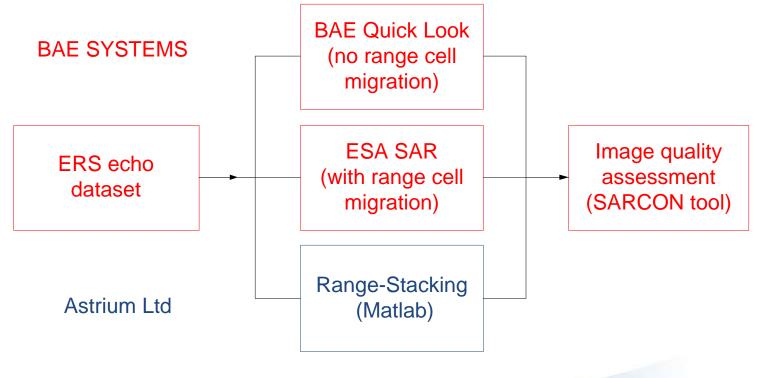
BMA House, London 20 March 2013

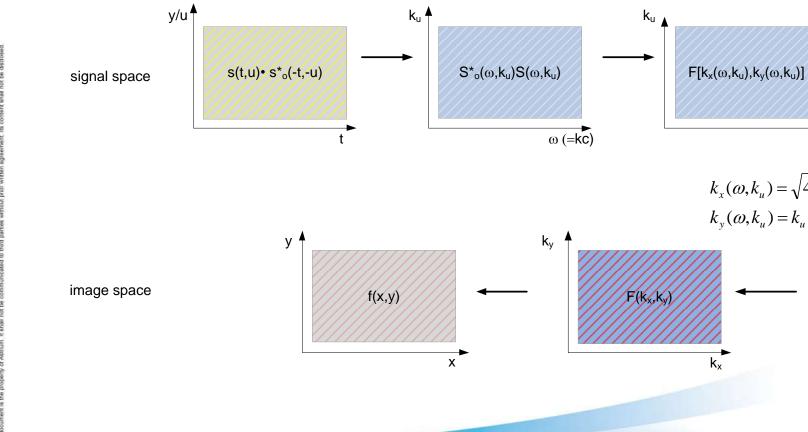
All the space you need

- In conventional spaceborne SAR, Level 1 products are generated in ground segment:
 - Detected SAR images (intensity)
 - Complex images preserving phase for interferometric products
- Interest in generating SAR Level 1 products on board the spacecraft
- Rationale
 - Real-time dissemination of imagery direct to users
 - met-ocean products for ship navigation, offshore engineering (including gas & oil platforms) and weather forecasting
 - sea-ice products for navigation
 - humanitarian aid and disaster monitoring (earthquakes, floods, forest fires, oil spills)
 - Data compression (mass memory, TM bandwidth constraints)
 - Wavemill oceanographic SAR (squinted system)
 - planetary missions

Develop SAR Level 1 algorithm in form suitable for flight processor

Astrium Ltd


- Techniques and technologies for on-board processing
- Acquired in telecoms applications, applied to SAR Level 1 processing
- CEOI 5th call activity: MATLAB algorithm
 - Stephen Brown, Kehinde Latunde-Dada, Alex Wishart
- BAE SYSTEMS ATC
 - SAR Level 1 image processing and commercial applications
 - CEOI 5th call activity: echo dataset preparation and image quality analysis
 - Steven Blythe, Trevor Macklin, Peter Meadows
- Team worked together on CEOI 4th Call study on SAR Level 1 OBP
 - Focus on range, azimuth compression in range-Doppler algorithm
 - 5th Call Study extends this work to general case, which includes squint


All the space you need 20 March 2013 - 4

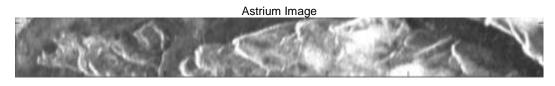
ω

 $k_x(\omega,k_u) = \sqrt{4k^2 - k_u^2}$

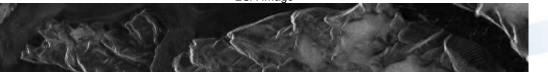
 $k_{y}(\omega,k_{u}) = k_{u}$

k_x►

All the space you need


AEU4.SSAR.PM.PS.00003

20 March 2013 - 5



- Image results for ERS-2 Greenland scene (acquired 21st March 2011)
 - Measure azimuth offset: difference between azimuth positions of distinctive features at near range (left) and far range (right).
 - Astrium-processed image at 4x coarser spatial resolution (range) positions of features agree with ESA-processed image.
 - BAE-processed quick-look image omits the correction for range cell migration: some features appear displaced relative to the other two images.
 - ESA-processed image includes range cell migration.

BAE quick-look Image

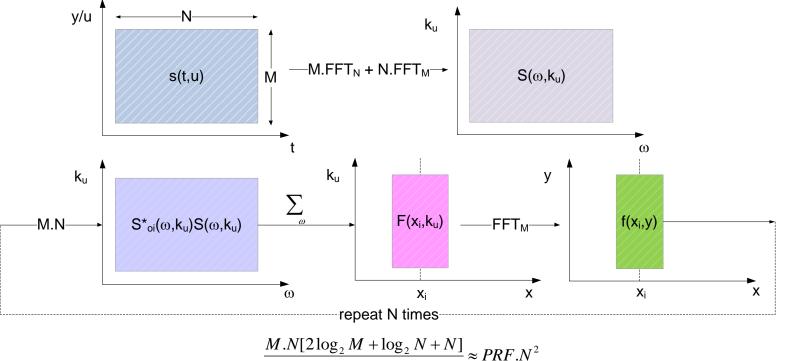
ESA Image

AEU4.SSAR.PM.PS.00003

All the space you need 20 March 2013 - 6

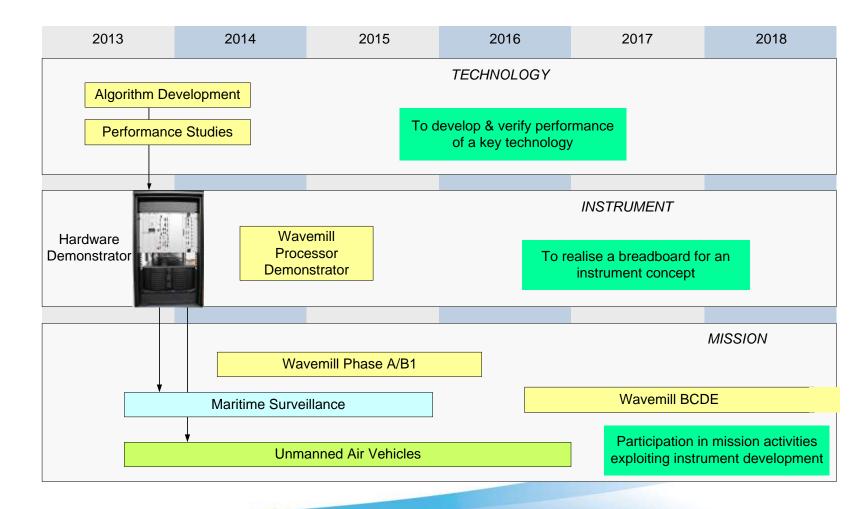
- - Measured azimuth offsets between features at near and far range show that range cell migration has been successfully applied to the Astriumprocessed image.
 - Results confirmed on 3 ERS-2 SAR images, including one case where there is 1° squint
 - Summary of measured azimuth offsets (two pairs of features are measured on each scene):

Image	Notes	Astrium	ESA	BAE
Greenland	Astrium at 4x resolution.	3000 m	3410 m	5010 m
21 Mar 2011		2050 m	2200 m	3810 m
Flevoland	Astrium at full resolution.	333 m	324 m	279 m
13 Dec 1995		554 m	550 m	418 m
Flevoland 18 Apr 2001	1° squint. Astrium at 4 x resolution.	2890 m 3340 m	2640 m 3160 m	1090 m 1760 m



Technical Report (5 of 5)

- PRF = 2000 Hz, N = 2000 pixels \Rightarrow multiplications/sec ~ 8.10⁹
- Virtex 5 FPGA multiplications/sec ~ 5.10¹⁰
- ASIC (180 nm) 0.1 nJ/multiplication \Rightarrow 10¹⁰ multiplications/sec ~ 1 Watt


Achievements and Positioning (1 of 1)

- Insight into 'wavefront reconstruction' approach to SAR imaging
 - Places 'conventional' algorithms in context
- Developed methodology for systematic performance analysis
 - Initially applied for modest squint
 - Further work would include IR characterisation, greater degree of squint
- First assessment of on-board processing hardware resources
- Strengthened Astrium Ltd/BAE SYSTEMS teaming
 - Complementary expertise, enhances UK capability
- Presentations
 - NCEO CEOI Conference, Nottingham, September 2012
 - CEOI Knowledge Exchange Event, London, January 2013

