

CEOI Grant Seedcorn Research proposal

High Frequency Doppler Radars for a Polar Precipitation Mission (HIDRA4PPM)

Neil Humpage, Alessandro Battaglia (University of Leicester) Hui Wang, Manju Henry, Peter Huggard (STFC Rutherford Appleton Laboratory)

Contents

Atmospheric Science Case

- Motivation: High latitude snowfall rate, snow water content and the advantage of two radar frequencies
- Link snow crystal morphology, radar reflectivity and ratio of radar reflectivity at two frequencies.
- Set up radar model of the atmosphere and use this to extract properties of the snow crystals.

Critical Radar Technology

- Requirements for frequency multiplier driver of radar transmitter power amplifier assessed at 140 & 220 GHz
- Current status of multiplier technology and design options
- Outline multiplier designs and sub-system descriptions.

Scientific motivation for measuring snowfall at high radar frequencies

- Lack of accurate, wide-spread precipitation observations at high latitudes → difficult to establish a baseline → needed to study future *trends* in the water and energy budgets
- At high latitudes, the majority of precipitation falls as snow (left hand figure)
- Measuring snowfall is very complicated:
 - High spatial and temporal variability
 - Complexity in snow crystal habits, densities, and particle size distributions
- Fraction of precipitation events which may be classified as 'light' precipitation increases with latitude (right hand figure)
 - Drives requirement for high frequency radar observations \rightarrow provides higher sensitivity

Single or multiple frequency approach?

- Currently use empirical relations to estimate snowfall rate S from radar reflectivity Z_e
 - Strongly dependent on the snow microphysical properties (particle habit, fall velocity and size distribution, see left panel)
- Single frequency observations provide no information on the microphysics of the target volume
 - Need to make assumptions on microphysics \rightarrow large uncertainties in estimated S
- Two (or more) frequency channels enables dual wavelength ratios (DWRs) to be measured
- DWR is sensitive to snow microphysics (particularly particle size, see right panel) \rightarrow potential to constrain the $Z_e(S)$ relationship used to estimate the snowfall rate

Single scattering property database

Centre for Centre for Instrumentation

- Jani Tyynela, University of Helsinki
- 4 snow habits
- 9 frequencies (GHz): 3, 14, 36, 60, 90, 120, 150, 180, 220
- Modelled aggregates consisting of 1, 2, 10 or 100 crystals (50 random cases each)
- Calculated optical cross sections:
 - Backscattering (HH, VV and VH)
 - Absorption
 - Extinction
- Also D_{max}, mass
- Other scattering property databases are available (Petty, Liu) but do not consider randomly formed aggregates

From Tyynela et al 2013 (JGR)

Z_e from scattering properties

Particle size distribution (PSD):

- Assume exponential distribution:
 - $N(D) \sim \exp[-3.67(D/D_0)] = \exp[-\Lambda D]$
- Evaluate reflectivities for a wide range of median particle diameter D₀:
 - 0.7 mm $\leq D_0 \leq 7.3$ mm, 500 m⁻¹ $\leq \Lambda \leq 5500$ m⁻¹
- $\sigma(D)$ = backscattering cross section at wavelength λ
- λ = radar wavelength
- K_w = dielectric factor of water at λ
- Dual wavelength reflectivity ratios show strong dependence on PSD, snow habit and the choice of frequency pair \rightarrow potential to improve snowfall retrievals

$$Z_e = \frac{\lambda^4}{\pi^5 \left| K_w \right|^2} \int_0^{D \max} \sigma(D) N(D) \ dD$$

CRM simulations

- Different models (GCE,WRF), bulk microphysics (5 hydrometeor types), high resolution (< 100m at lowest altitudes)
- Model output used in this study focuses on a region over Finland (Lat: 58 to 61°N, Lon: 20 to 29°E)
- Use CRM data to describe target scenes for the radar simulator

Radar simulator output

- Red spots indicate the location of each simulated radar shot (nadir)
- Simulator outputs Doppler spectrum profile → used to calculate measured reflectivity by integration
- Both single (exact) and multiple scattering solutions calculated, with/ without attenuation
- Have results for 220, 150, 94 and 35
 GHz for each of the four habits
- Essential tool in the absence of previous high frequency radar observations

Radar simulator output: reflectivity profiles

- Dashed curves: single scattering, no attenuation
- Dots: single scattering, attenuation included
- Attenuation is function of snow water content and snow habit → particularly strong dependence in 35/220 GHz DWR profile

Technology background: EIK Amplifiers

- Critical Technology for pulsed space radars at frequencies above 100 GHz
- Final output stage is a vacuum tube amplifier: Extended Interaction Klystron
- Sole source manufacturer: Communication & Power Industries, Canada
- Application: NASA CloudSat: 2 off EIKs provide 94 GHz, 3.3 µs, 2 kW

System design and driver requirements

• EIK amplifier gains fall with frequency: input power requirements @ 140 and 200 GHz are so high that they exceed currently available solid state sources

Frequency (GHz)	Pulse duration (µs)	Bandwidth (MHz)	Temperature Range (°C)	Output power (mW)	Proposal output power (mW)
140	< 13	600	10 - 50	Target: 32 Worst case: 50	100
220	< 13	300	10 - 50	Target: 40 Worst case: 160	200

• General approach: do pulse shaping at lower frequencies, < 100 MHz, and then up-convert via frequency multiplication to above 100 GHz:

Current status RAL frequency multipliers

Output Frequency (GHz)	Multiplying Function	Input Power (mW)	Output Power (mW)	Efficiency (%)
122	x 2	40	12	30
160	x 2	60	15	25
332	x 2	50	5.5	12
94	x 3	100	15	15
120	x 3	100	15	15

170 GHz Doubler

Routes towards achieving higher output power

Centre for

- Trade-offs:
 - Number and configuration of diodes
 - Semiconductor material: GaAs, GaN
 - Substrate: GaAs, AlN, CVD Diamond
 - Frequency multiplication factor: x2, x3
 - Application of power combining
 - Available source power

• Construction of 140 GHz driver

• Practical system

Construction of 220 GHz driver

• Practical system needs to apply waveguide power combining

• 70 GHz drive chain same as used for 140 GHz source.

Conclusions

- Previous single frequency retrievals of SWC and snowfall rate limited by strong dependence of snow optical properties on crystal shape
- Significant improvement in SWC and snowfall rate information may be obtained using frequency pairs (35/220 GHz) and triplets (35/90/140 GHz or 35/90/220 GHz)
- End-to-end radar simulator set up and tested on various snow scenes at various frequencies - a valuable tool given lack of observational data at higher frequencies
- Requirements for driver of radar transmitter power amplifier assessed at 140 & 220 GHz
- Technical routes to realise these drivers, based on frequency multiplication presented
- Outline designs, and supporting components, described.