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Atmospheric Science Case 
 

• Motivation: High latitude snowfall rate, snow water content and the 

advantage of two radar frequencies 

 

• Link snow crystal morphology, radar reflectivity and ratio of radar reflectivity 

at two frequencies. 

 

• Set up radar model of the atmosphere and use this to extract properties of 

the snow crystals. 

 

Critical Radar Technology 
 

• Requirements for frequency multiplier driver of radar transmitter power 

amplifier assessed at 140 & 220 GHz 

 

• Current status of multiplier technology and design options 

 

• Outline multiplier designs and sub-system descriptions. 



Scientific motivation for measuring 

snowfall at high radar frequencies 

 • Lack of accurate, wide-spread precipitation observations at high latitudes  difficult to establish 

a baseline  needed to study future trends in the water and energy budgets 

• At high latitudes, the majority of precipitation falls as snow (left hand figure) 

• Measuring snowfall is very complicated: 

• High spatial and temporal variability 

• Complexity in snow crystal habits, densities, and particle size distributions 

• Fraction of precipitation events which may be classified as ‘light’ precipitation increases with 

latitude (right hand figure) 

• Drives requirement for high frequency radar observations  provides higher sensitivity   



Single or multiple frequency approach? 

 • Currently use empirical relations to estimate snowfall rate S from radar reflectivity Ze 

• Strongly dependent on the snow microphysical properties (particle habit, fall velocity and 

size distribution, see left panel) 

• Single frequency observations provide no information on the microphysics of the target volume 

• Need to make assumptions on microphysics  large uncertainties in estimated S 

• Two (or more) frequency channels enables dual wavelength ratios (DWRs) to be measured 

• DWR is sensitive to snow microphysics (particularly particle size, see right panel)  potential 

to constrain the Ze(S) relationship used to estimate the snowfall rate 
 



• Jani Tyynela, University of Helsinki 

• 4 snow habits 

• 9 frequencies (GHz): 3, 14, 36, 60, 
90, 120, 150, 180, 220 

• Modelled aggregates consisting of 1, 
2, 10 or 100 crystals (50 random 
cases each) 

• Calculated optical cross sections: 

– Backscattering (HH, VV and VH) 

– Absorption 

– Extinction 

• Also Dmax, mass 

• Other scattering property databases 
are available (Petty, Liu) but do not 
consider randomly formed 
aggregates 

 

 

Single scattering property database 
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From Tyynela et al 2013 (JGR) 



Ze from scattering properties 
• Particle size distribution (PSD): 

– Assume exponential distribution: 
• N(D) ~ exp[-3.67(D/D0)] = exp[-ΛD] 

– Evaluate reflectivities for a wide 
range of median particle diameter D0: 

• 0.7 mm ≤ D0 ≤ 7.3 mm, 500 m-1 ≤ Λ ≤ 
5500 m-1 

– σ(D) = backscattering cross section at 
wavelength λ 

– λ = radar wavelength 

– Kw = dielectric factor of water at λ 

• Dual wavelength reflectivity ratios show 
strong dependence on PSD, snow habit 
and the choice of frequency pair  
potential to improve snowfall retrievals 

 

 
 

 

 



CRM simulations 

• Different models (GCE,WRF), bulk microphysics (5 hydrometeor types), high resolution (< 

100m at lowest altitudes) 

• Model output used in this study focuses on a region over Finland (Lat: 58 to 61°N, Lon: 20 to 

29°E) 

• Use CRM data to describe target scenes for the radar simulator 



Radar simulator output 

• Red spots indicate the location of 

each simulated radar shot (nadir) 

• Simulator outputs Doppler spectrum 

profile  used to calculate 

measured reflectivity by integration 

• Both single (exact) and multiple 

scattering solutions  calculated, 

with/ without attenuation 

• Have results for 220, 150, 94 and 35 

GHz for each of the four habits 

• Essential tool in the absence of 

previous high frequency radar 

observations 

150 GHz 220 GHz 



Radar simulator output: reflectivity profiles 

• Dashed curves: single scattering, 
no attenuation 

• Dots: single scattering, attenuation 
included 

• Attenuation is function of snow 
water content and snow habit  
particularly strong dependence in 
35/220 GHz DWR profile 
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Technology background: EIK Amplifiers 

• Critical Technology for pulsed space radars at frequencies above 100 GHz 

 

• Final output stage is a vacuum tube amplifier: Extended Interaction Klystron 

 

• Sole source manufacturer: Communication & Power Industries, Canada 

 

• Application: NASA CloudSat: 2 off EIKs provide 94 GHz, 3.3 µs, 2 kW 

 

 



System design and driver requirements 

• EIK amplifier gains fall with frequency: input power requirements @ 140 and 

200 GHz are so high that they exceed currently available solid state sources 

 

 

 

 

 

 

 

 

• General approach: do pulse shaping at lower frequencies, < 100 MHz, and 

then up-convert via frequency multiplication to above 100 GHz:   

  

 

 

 



Current status RAL frequency multipliers 

  

 

 

 

170 GHz Doubler 



Routes towards achieving higher output powers 

• Trade-offs:  

• Number and configuration of diodes 

• Semiconductor material: GaAs, GaN 

• Substrate: GaAs, AlN, CVD Diamond 

• Frequency multiplication factor: x2, x3  

• Application of power combining 

• Available source power 

 

• Construction of 140 GHz driver 

  

 

 

 

 

• Practical system 
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Construction of 220 GHz driver 
  

 

 

 

 

 

 

 

• Practical system needs to apply waveguide power combining 

 

 

 

 

 

 

 

 

• 70 GHz drive chain same as used for 140 GHz source. 

 

 

 



Conclusions 

• Previous single frequency retrievals of SWC and snowfall rate limited by strong 

dependence of snow optical properties on crystal shape 

 

• Significant improvement in SWC and snowfall rate information may be obtained 

using frequency pairs (35/220 GHz) and triplets (35/90/140 GHz or 35/90/220 

GHz) 

 

• End-to-end radar simulator set up and tested on various snow scenes at various 

frequencies - a valuable tool given lack of observational data at higher 

frequencies 

 

• Requirements for driver of radar transmitter power amplifier assessed at 140 & 

220 GHz 

 

• Technical routes to realise these drivers, based on frequency multiplication 

presented 

 

• Outline designs, and supporting components, described. 


