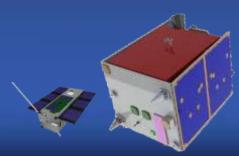


CEOI 5th and 6th Open Calls Final Review


Application of a New Detector Processing Technique for Space-borne Fire Measurement and Monitoring

UK SPACE AGENCY

Mark Chang (SSTL) Martin Wooster (King's College, London University)

> 20th March 2013 London

Project Introduction

Project rationale

- Fires have a major impact on ecological and environmental systems.
- Project key objective
 - Address the need for cost effective measurement & monitoring of fires from space, through
 - Specification of top level science requirements
 - Specification of mission functional requirements
 - Investigation of a-Si microbolometer detectors
 - Definition of instrument system concept

Commercial & science case

- Due to global appearance, satellite observations are the only method for wide scale quantification
- Project partners

- SSTL
 - Project lead / Mark Chang
 - Detector testing / Luis Gomez Rojas, Enrico Sain, William Avison, Matthew Price
- KCL
 - Science and mission requirements / Martin Wooster

Mission & Systems Requirements Specification

Activities undertaken

- End User requirements capture by KCL
- Mission & Instrument requirements proposal by SSTL
- Requirements iteration (2 instances) to generate requirements baseline
- Key results
 - Reduction of 29 proposed requirement objects to 22 baseline requirements
 - 3 driving requirements identified

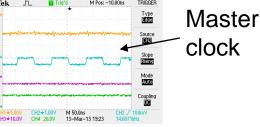
- Absolute Radiometric Accuracy per channel

• 0.5 K is defined

Saturation Temperatures

- MIR (3 to 5 µm) 800 K
- LWIR (8 to 12 μm) 600 K

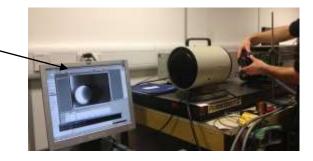
– Stray Light


- Percentage of fire scene pixels leaking into neighbour <1.25% of fire scene pixels' level.
- Report generated in draft. Release pending final update.

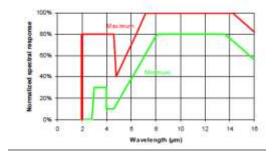

Detector Test Bench Preparation

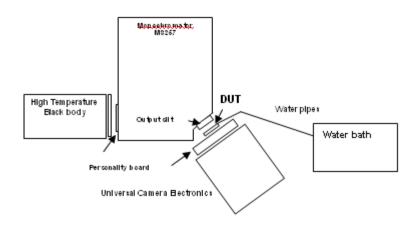
Activities undertaken

- Production & testing of interface board for Ulis PICO640E detector
- Writing and release of timing control files for detector readout via SSTL Universal Camera



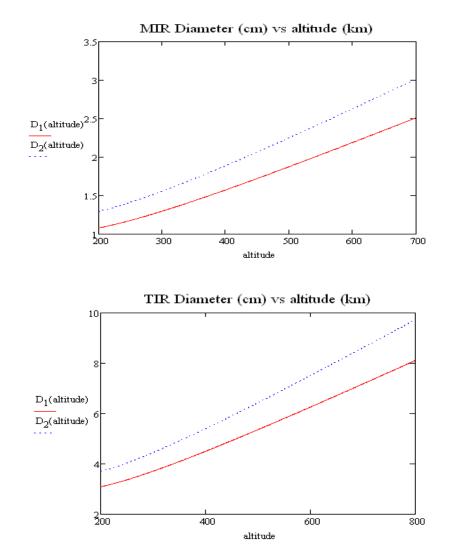
- Test Equipment Readiness Review held 23/11/2013
- Key results
 - Functional test of detector readout through SSTL Universal Camera electronics completed
 - Performance test of detector readout completed


Extended Area Blackbody _____ imaged through wideband IR lens


- Reporting:
 - SSTL Test Report SmarTeam #0202380

Detector Test Programme

- Activities undertaken
 - Tests underway:
 - Detector Spectral Response
 - Detector NEDT (incomplete)
 - Key results



- Spectral response confirmation from $3 16 \mu m$.
- Assessment of normalised spectral response on 2 detectors selected from same production batch
- Report in draft, pending NEDT results

Radiometric Analysis

- Definition of Instrument System Concept
 - Aspects investigated
 - Instrument Geometry
 - Instrument Dynamics
 - Instrument Sensitivity
 - Key results
 - Pushbroom vs Whiskbroom studied
 - Step starer ruled out due to detector limitations
 - Aperture sizes possible are plotted on right
 - F/6 system considered
 - Required NEDT for LWIR (TIR) is easily achievable
 - Required NEDT for MIR to be demonstrated by test
 - Report generated; full release pending Systems requirements report release.

Achievements against goals

- Successfully completed
 - Review of end user requirements
 - Definition of mission and system requirements with justification
 - Test Equipment procurement and manufacture
 - Test Equipment Readiness Review completed
 - Test Programme 50% complete
 - Radiometric analysis produced
 - Altitude range delimited
 - Scanning/Viewing mechanism trade-off produced
 - Aperture sizing completed
 - NEDT and MRDT calculated based on theoretical parameters for MIR, measured parameters for LWIR (TIR)
 - Design trade-offs analysed
 - Saturation
 - Spectral vs spatial imaging paths for MIR/TIR
 - Active thermal control vs thermally stable structural design

Issues and problems encountered

- Test Equipment preparation took longer than anticipated by ~30% calendar time.
 - Detector procurement completed but loan of check-out equipment by detector supplier was never fulfilled (by supplier)
- Test Programme consequently impacted
 - Recently, expert test engineer not available due to illness
 - Junior engineers put in place to complete programme

Positioning achieved

- Presentations & Publications
 - "Fire detection and fire growth monitoring from satellite monitors", M. Cutter et al, proc. 63rd IAC, 2012.
- Leverage achieved
 - Utilisation of SSTL expertise in use of thermal infrared microbolometer arrays
 - Realisation of a realistic systems specification for a costeffective satellite monitor
 - Step forward in defining a commercial product
- Collaborations forged/furthered
 - Partnership between KCL & SSTL
 - Partnership between SSTL & detector supplier (Ulis)

Other Achievements

- Training and knowledge exchange
 - KCL/SSTL and end user community knowledge exchange during specifications capture and baseline activity
 - SSTL training of junior engineers on test equipment
- UK Capability enhancement
 - Benefits to UK Space:
 - SSTL & KCL in position to undertake detailed characterisation of new detector product
 - SSTL has made step towards a product design
 - Product design framework in place
 - Iterations required to refine design options

Roadmap

- Missions/exploitation route
 - MIR+TIR (filter based, tbc) imager to be designed
 - Fire monitoring mission on microsatellite platform can take advantage of this
 - Opportunity with e.g. North American Forestry
- Future steps
 - Technology development required
 - Modification of SSTL readout electronics to implement TDI in detector processing chain
 - Can leverage off ongoing ESA programme work at SSTL
 - Issues to be resolved
 - Space qualification of detector