

CEOI 5th and 6th Open Calls Final Review

Concept Studies for a Methane Emission Imager

Hartmut Boesch – University of Leicester

London 20 March 2013

Project	Introduction
---------	--------------

- Methane (CH₄) is a strong greenhouse gas with warming potential 20 times higher than for CO_2 (CH₄ emissions need to be reported to UNFCCC and EU)
- There is now good heritage on global monitoring of CH₄ from space that provides constrains on large-scale emissions.
- Move towards missions that can monitor CH₄ on smaller scales to monitor point sources for CH₄ or CO₂ (landfills, power plants) and contribute to verification of national inventories.
- The CH₄ proxy observation method (based on CH₄/CO₂ ratio) is of interest since it has low sensitivity to aerosol/clouds and since it does not require high spectral resolution which can allow small National, bi-lateral or opportunity-based or commercial missions

Satellite (GOSAT) CH_4 Retrieval compared to a Model (GEOS-Chem)

Estimated annual methane emissions over Europe

UK Centre for EO Instrumentation

Project Objective

Project Goal: Use the mature concept of CH_4 proxy detection for a small and focused instrument to target CH_4 emissions on small spatial scales

Specific project objectives:

- Define a novel concept for measuring atmospheric concentrations of the important greenhouse gas methane (CH₄) based on the use of discrete shortwave infrared spectral bands
- o Investigate its characteristics in terms of size and spatial resolution
- Show its potential application to the SSTL TechDemoSat platform as a demonstrator mission

Project Team

Hartmut Boesch, Earth Observation Science Group, University of Leicester:

- Greenhouse gas remote sensing
- SWIR spectroscopy and radiative transfer simulations

Dan Lobb, Ferhat Culfaz, Surrey Satellite Technology Ltd.

- Optical systems
- SWIR spectrometer design

Paul Palmer, School of GeoSciences, University of Edinburgh

- Atmospheric modelling
- Greenhouse gas budgets

Science Requirements

- To infer requirements, we have applied a mass balance approach to UK CH₄ (and CO₂ point) sources, reflecting largest uncertainties associated with current inventories:
 - Enteric fermentation
 - Landfills
 - Power plants
 - Chemical industry
- \circ CH₄ emission imager needs:
 - single sounding measurement error of $\leq 1\%$
 - ground pixel of ≤ 1 km²
 - swath width of 50 100 km to capture outflow

Band Setup and SNR

- $\circ~$ Discrete wavebands for CO_2, CH_4 and H_2O columns and surface albedo
- Atmospheric simulations showed that
 - SNR > 1,000 is needed to achieve errors of 1%
 - Narrow bandwidth (~4nm) is needed for CH₄ band, but other bands can be much wider
 - High radiometric calibration accuracy (<0.1%) needed between albedo and gas bands
- Wide bands centred around gas bands might be needed to mitigate uncertainties from surface albedo variations

	CH₄ Band	CO ₂ Band	H ₂ O Band	Albedo 1	Albedo 2
Range	1665-	1606 –	1696-	1626 –	1679-
/nm	1668	1617	1698	1629	1683
Centr	1666.5	1611.5	1697	1627.5	1681
e/nm					
Width/	3	11	2	3	4
nm					

Centre for

Technical Feasibility

- Study has been limited to InGaAs linear array detector due to low cost and only moderate cooling requirement
- Filters are feasible but likely to be expensive
 - Possibly \$20k for 2-3nm bandwidth at 1666nm
- SNR is feasible for ~1km GSD at 20mm aperture
- Main problems:
 - Relative response drifts >0.1% between detectors
 - Need precise spatial registration of channels
 - Reference albedo channels need to be close to CH₄, CO₂ absorption channels

Concept with five independent channels

Page 8

- Separate lengths of a single detector, for the absorption and reference bands
- Relatively complex folding of optical paths due to large diameters of lenses
- Advantages:
 - Offset and gain changes will be similar for the absorption and reference bands
- Residual problems for <0.1% errors
 - Differential drifts in offset and gain
 - Differential non-linearity

Solution 1 – Separated Channels

Solution 2 – Oscillating filters

- Oscillating filters
 - For each CO₂ and CH₄ band, oscillate between narrow and wide filter
- Filters vibrated so that the beam passes through each in turn.
- Same detector for absorption and reference readings
 - eliminating detector drifts and non-linearity
- Large scene image is formed by a telescope lens, eg at f/10, and relayed onto a detector at f/2.
- More elaborate arrangements possible

Time-sharing filter system for CH4 or CO2 view along-track

Time-sharing filter system for CH4 or CO2 view across-track

Achievements against goals

- Defined a measurement concept for CH₄ detection based on a number of discrete bands in the shortwave infrared and analyzed measurement performance with simulations (Obj. 1)
- Developed a basic instrument concept and investigated a number design options (Obj. 2)
- Discussed the possibility of developing an instrument suitable for the SSTL TechDemoSat platform (Obj. 3)

As expected for a exploratory seedcorn study several technical issues have been encountered and investigated:

- High SNR requirement (feasible)
- Band pass filter:
 - Need for narrow bandwidth (expensive but feasible)
 - Shift of filter transmission with angle (limit cone angle and use filters in front of optics)
- $_{\odot}\,$ Errors due to detector and optics drift errors
 - Need for calibration system *(feasible but increased weight)*
 - Use same detector/optics for gas and albedo bands (possible with oscillating filters, but needs a solution for spatial co-registration)
- Surface albedo variations (use overlapping wide and narrow band filters or gas cells; will require higher signal-to-noise)

Positioning achieved and Other Achievements

- There is significant interest by UK space industry on GHG monitoring and related downstream services and project represents a first step towards new measurement approaches relevant for commercial applications from very small satellites
- Project has strengthened collaboration between key groups in UK with interest in GHG remote sensing from satellites (SSTL, University of Leicester and University of Edinburgh)
- Project has fostered direct interaction between team members which has resulted in significant exchange of knowledge between SSTL and University groups in key areas SWIR spectroscopy, optical design etc.
- Project has been presented to wider audience at CEOI Event
 'Innovations in Remote Sensing Event' in London

Roadmap

- **Short-term**
 - More detailed trade-offs between the approaches that have been developed in this study: use of separate detectors, or at least separate detector-areas (solution 1) or use of time-sharing (chopping, solution 2) to measure absorption and reference channels at the same detector elements
 - More detailed investigations in detector characteristics (offset and gain stabilities and linearity), especially for systems with separate detectors
 - Further investigate filter options, especially use of gas calls appears an interesting option.
- o Mid-term
 - Development of breadboard or airborne demonstrator
 - Seek funding from ESA, UKSA or private sector