CEOI 5th and 6th Open Calls Final Review

Wavemill CEOI Mission and Instrument Study

<u>Team Members:</u> Benjamin Dobke Katherine Bennell Byron Richards

British Medical Association London 20.3.2013

Centre for Centre for Instrumentation

All the space you need

Introduction

- Wavemill is a mission/instrument concept for a space-borne interferometric synthetic aperture radar (SAR)
- Key objectives measure:
- 1. Sea surface currents
- 2. Sea surface winds
- 3. Sea surface height

- It accomplishes this via a unique along track (AIT) and cross track (XTI) interferometry simultaneously
- Science case
 - Currents have important consequences to many stakeholders e.g. climate change modelling, meteorology, shipping, ocean commerce.
 - There is no present-day global measure of accurate, regular-repeat, global currents.
- Project partners:
 - The National Oceanography Centre (NOC, Southampton), via Dr Christine Gommenginger, is providing input to help define science requirements.

Date - 2

Technical work – Overview

- Main goal of this study was to advance the overall mission-system and instrument design.
- An overriding constraint for this mission is that it fit within the VEGA launch fairing which is expected to be the imposed as ESA's Earth Explorer 9 launch vehicle.
- There were six specific critical areas:
- Help define mission baseline science requirements
- □ Assess different orbital options
- Review key antenna design
- □ Reduce overall mass/power of the mission concept
- Develop a platform design that fits within the VEGA
- Decide on data processing options

confidential. td/SAS/Gmbh

All the space you need

March 2013

Technical work – Science requirements

- Meeting established between NOC's Christine Gommenginger and Astrium Ltd. to determine baseline science requirements
- Key topics included timeliness of data retrieval, accuracy of measurement (currents, sea surface height and winds), mission lifetime, data products, orbital coverage, etc.

One key example.... ocean current accuracies...

Key Science Requirements and Associated Drivers						
Topic and MRD Reg. Identifier	Description	Mission/System Drivers	Instrument Drivers			
OPEN OCEAN SURFACE CURRENTS:	Open ocean currents 2.5- 500 cm/s, with horizontal resolution of 1.0-2.5km,	10-day sampling is best to- date, but at 100's km apart. Sampling drives orbit selection. At the moment	Numbers for current retrieva accuracy have been optimistic since no wave or			
(MRD: WM-REQ: 140 TO 160)	and sampling of 5-10 days.	no real current sampling, implying no hard lower limits.	included. Needs end-to-end simulation			

K	Key Mission/Instrument Requirements and Flow-Down					
Topic and Req. Identifier	Description	Mission/System Drivers	Instrument Drivers			
MISSION LIFETIME: (MRD: WM-REQ: 960 TO 970)	The Wavemill mission shall be 6 years in duration: 3 years nominal + 3 years extended. A 12 month science mission is a minimum.	Mission needs to be minimum 3-5 years to be a serious EE9 contender.	N/A			
DATA PRODUCTS: (MRD: WM-REQ: 1010 TO 1020)	Mission shall produce Single-Look-Complex (SLC) data with no on- board processing.	Both data-downlink for unprocessed data, and on- board processing is very challenging. Will NEED ~1% raw data for calibration etc.	Cycling instrument in different duty cycles can effect component lifetimes.			
OPERATION MODES: (MRD: WM-REQ: 1060 TO 1200)	Two different modes: Full Swath with two swaths, and Wave Mode with swaths spaced at some TBC along track distance.	Full Swath data-rate is going to be too high in standard configuration. Wave Mode spacing of 100km misses mesoscale and is useless.	Cycling instrument components (e.g. High Power Amplifier HPA) in Wave Mode can positively affect data/power rate, but negatively affect component lifetimes.			
GLOBAL COVERAGE: (MRD: WM-REQ: 1210 TO 1290)	Wavemill should cover inland waters.	Small area compared to oceans, but operationally hard to switch on over certain lakes/rivers.	N/A			
ORBIT: (MRD: WM-REQ: 1210 TO 1290)	The orbit shall allow for mesoscale measurement at Latitude 45 th N/S, with spatial and temporal resolution of 1-50km and S-10 days respectively.	Will meet requirement based on global coverage, but could lead to reduced resolution at higher latitudes	N/A			
ORBIT DETERMINATION: (MRD: WM-REQ: 1040)	Wavemill shall be capable of precise pointing w.r.t satellite using Precise Orbit Determination (POD) system.	POD system must be able to provide antenna required TBC stability to meet science requirement.	SAR instrumentation will not function without effective POD.			
LAUNCH VEHICLE: (MRD: WM-REQ: Unspecified in MRD)	Wavemill shall be of sized both in terms of mass and dimensions, to fit a VEGA class launch vehicle	Solar array and radiator sizing for required power, plus mass are all critical in Wavemill concept.	Instrument power requirements drive available SA and radiator sizing.			

Technical work – Orbital trade-off

- Previous studies had nominal altitude at 546 km.
- For mostly mass/power considerations, a lower altitude is better. Instrument power reduces with reduced duty-cycle (DC).
- Ideal choice is now near a 400km, 13-day repeat, dawn-dusk, Sun-Sync orbit.

All the space you need

Technical work – Antenna design review

- Antenna design review focused on reducing power, mass and size of instrument payload
- Antenna baseline length is ~17m, so a folding-joint design was investigated
- Losses due to fold are present but acceptable
- Investigating CFRP antenna structure resulted in little mass advantage (~20kg), but introduces unwanted thermo-elastic and manufacturing complexities.

Technical work – Mission Mass/Power

- Previous studies were significantly (~25%) over launch mass/power limits, and packaging was problematic.
- Re-analysis of critical subsystems, reduction in orbit altitude, reduction in operational duty cycle, incorporation higher efficiency antenna components, etc.
- Mass and power now fall within limits compatible with the VEGA launcher while keeping signal/science return from instrument constant.

Launch Vehicle Capability	VEGA Manual at 400km	1516.7
Mass Margin to Launch Vehicle Capability		
······································	I ~ I	
Power needed from SA (W)	$P_{SA} = \frac{\frac{P_e T_e}{X_e} + \frac{P_d T_d}{X_d}}{T_d}$	2240.4
SA Area (m ²)	-	10.8
Corresponding SA Mass (kg) (w. 20% margin)	-	44.0
Resultant Radiator Area for Thermal Dissipation (m	²) -	8.4

Overall Mass Budget				
Subsystem	Current Best Estimate (kg)	Design Maturity Margin (kg)	Total CBE + DMM (kg)	
Data Handling Subsystem	47.0	4.6	51.6	
Power Subsystem	121.8	13.3	135.1	
Harness	60.0	18.0	78.0	
X Band Communications Subsystem	10.9	0.9	11.7	
S-Band Communications Subsystem	9.9	0.8	10.7	
AOCS	112.0	5.6	117.6	
Structure	197.8	39.6	237.4	
Thermal Subsystem	70.7	16.9	87.7	
Propulsion	18.7	1.4	20.1	
PLATFORM / SERVICE MODULE TOTAL	648.8	101.0	749.8	
Payload	313.5	62.2	375.6	
PAYLOAD / PAYLOAD MODULE TOTAL	313.5	62.2	375.6	
DRY TOTAL	962.2		1125.4	
System Mass Margin	[15%	1294.2	
DRY TOTAL (incl. System Margin)			1294.2	
Propellant			153.9	
Residuals + Uncertainty			1.6	
Pressurant			0.2	
WET MASS			1449.9	
Launch Vahiele Adapter (VECA Licere Day, July 2012)			70.0	
WET MASS incl. Launch Vehicle Adapter			1519.9	
Launch Vehicle Capability VEGA Manual at 400km			1516.7	
Mass Margin to Launch Vehicle Capability			-3.2	

Required Solar Array Power				
Parameter	Symbol	Value		
Average power during daylight and eclipse (W)	P _d , P _e	1607.9		
Orbital altitude (km)	h	400		
Eclipse duration (min)	Te	21.3		
Daylight duration (min)	T _d	71.0		
Design lifetime (years)	L	5		
Path efficiency during eclipse	Xe	0.9118		
Path efficiency during daylight	Xa	0.94		
Power needed from SA (W)	$P_{SA} = \frac{\frac{P_e T_e}{X_e} + \frac{P_d T_d}{X_d}}{T_d}$	2240.4		
SA Area (m²)	-	10.8		
Corresponding SA Mass (kg) (w. 20% margin)	-	44.0		
Resultant Radiator Area for Thermal Dissipation (m ²)	-	8.4		

Technical work – Platform design

- Key constraint was to fit within VEGA fairing
- Folding antenna design improved packaging efficiency considerably
- Power available from solar array area is now more than that required by platform/payload
- Limiting factor is free structure area for radiators
- Overall, a feasible configuration for VEGA

Technical work – Data Handling/Processing

- Instrument output is in the range of 1 3 Gbits/s, depending on the compression scheme employed
- For comparison, the fastest X-band data-rate is around 0.5Gbits/s. Given a window of only of 5-10 minutes exists for downlink, downlinking raw data is not a viable option.
- One possible solution: Pre-process the raw data on-board, and directly produce the interferograms before downlink. This could reduce the required data-rate to ~20 - 30 Kbits/s.
- Downside: Requires real-time knowledge of platform/antenna attitude and baseline-length

All the space you need

Achievements against goals:

Overall study aim was to advance our the Wavemill concept at system and instrument level, adding to that state of understanding of each critical area.

Particularly from the mission-systems side, we now have for the first time, a credible baseline mission for Wavemill.

Positioning achieved:

We are now in a good strategic position to bid for the ESA Wavemill Phase-0, and build up a mission concept moving forward to the Earth Explorer 9 call.

Knowledge exchange:

Significant exchange occurred between the team members from Astrium and the NOC during the science requirement discussions.

UK Capability enhancement:

Through this study, Astrium Ltd. has enhanced its position as a possible instrument prime, as well as possibly contributing to the platform components/design.

NOC's Christine Gommenginger has been further identified as a possible UK candidate as the science PI for Wavemill.

All the space you need

March 2013

- Creation of in-house software to directly model squinted SAR echo data and translate that to achievable science data.
- Further development of a baseline laser metrology system will need to be performed, and a development schedule constructed.
- Longer term, the Ku-band klystron will have to be space qualified.
- The RF components on the transmit path such as the filters and switches will require development to higher power handling
- A bottom-up structural analysis will need to be performed.
- Bread-boarding of the antenna system will need to be completed and is currently undergoing a definition phase for a future study.

