

LOw Cost Upper atmosphere Sounder LOCUS

Presented by Professor Bruce Swinyard

Department Physics and Astronomy

University College London

On behalf

SURREY RAL Space

Proprietary Information of Surrey Satellite Technology US LLC. Subject to Non-Disclosure Obligation.

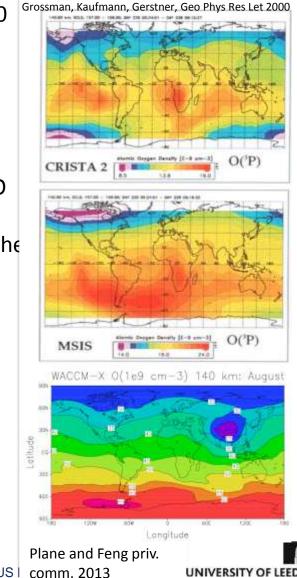
Y OF LEEDS

UCL

Motivation and Modelling

Mesosphere and Lower Thermosphere (MLT -~50 -150 km) is poorly sampled

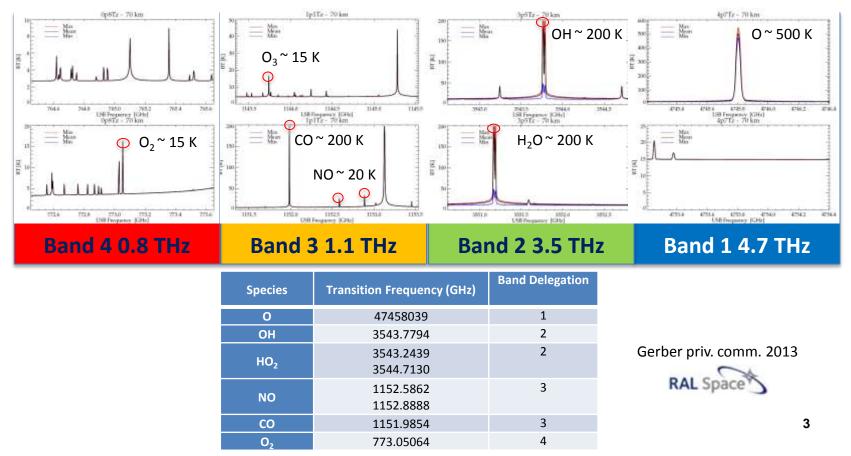
MLT is cooling ~ten times faster than troposphere is warming \rightarrow highly geared indicator of climate change

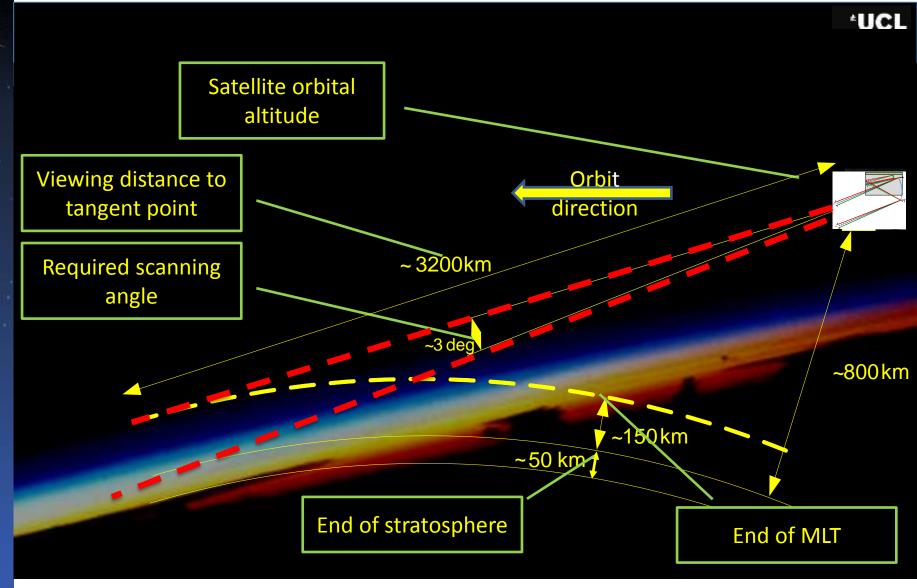

Major chemical species are atomic O, OH, H_2O and NO

Complex physical phenomena and chemistry control the energy balance \rightarrow all ultimately driven by atomic O

Sampling these species in the MLT can only be efficiently achieved in the THz range (0.8 – 5 THz)

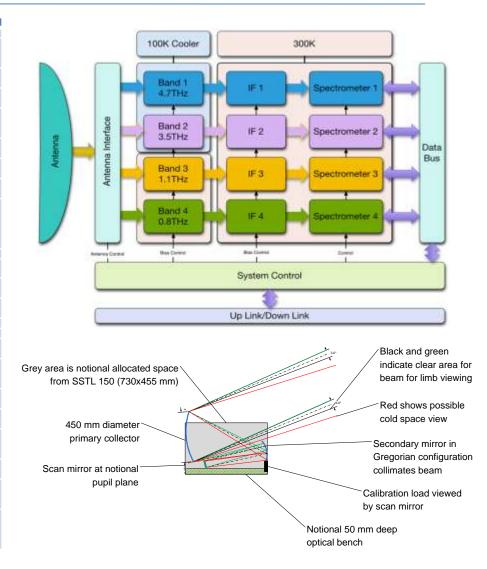
Observational platforms for this are expensive and technically challenging


We wish to change the paradigm


Proprietary Information of Surrey Satellite Technology US I Subject to Non-Disclosure Obligation.

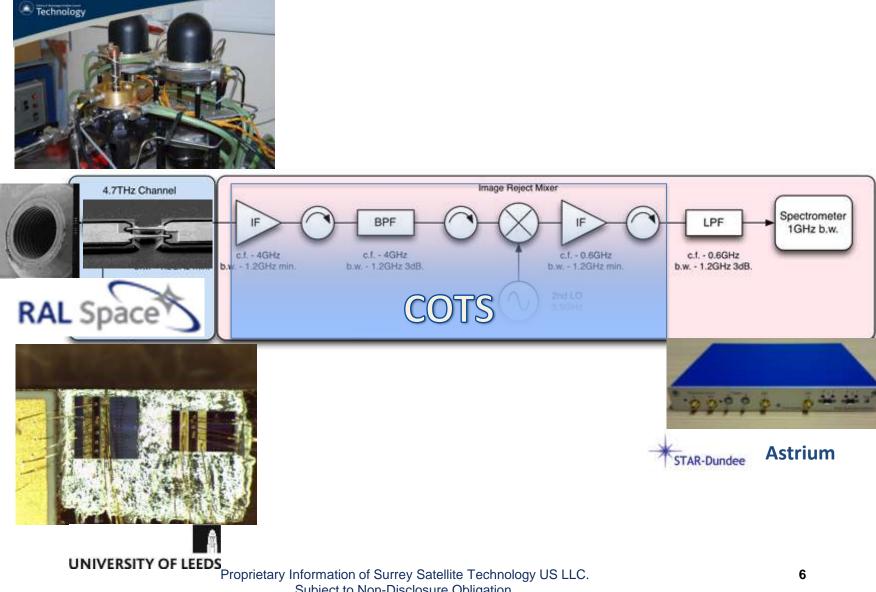
Line Selection

- A single frequency band heterodyne receiver covers ~few GHz
- Multiple receivers required to measure critical species
- Important to identify which frequency bands are required
- Extensive work at RAL on modelling spectral line frequencies and intensities based on output of Leeds WACCAM-X models


Mission Outline

Payload Requirements and System Design

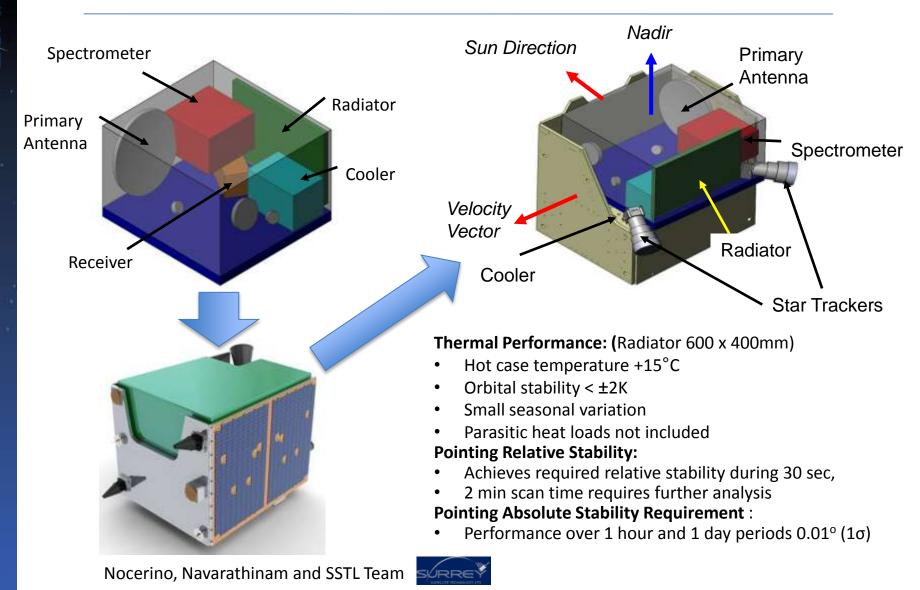
Terahertz Payload Parameter	Unit	Value/Description	Comments
Antenna Aperture Defined by lowest freq.	cm	55	Off-axis illumination providing a projected 55cm usable diameter. Steerable with on-board guidance.
Spatial Pixels	-	Single beam	Steering to required tangent heights
Spatial Resolution	km	3 (FWHM)	Limb view at 3,200km from satellite
Spurious Sidelobes Level	dB	<-30	Defined as below main beam centre Requires greater science definition.
Frequency Range	THz	~0.7 to 5	Achieved through use of four independent THz channels.
Instantaneous Bandwidth	GHz	6	Formed from 3x2GHz FFT spectrometer units.
Spectral Resolution	MHz	1	1MHz sufficient for spectral line characterisation.
Minimum Detectable Signal NE∆T (SSB assumed)	2,	, 4, 12, 46	s 2,500, 3,500K, 10,000, 40,000K 3 @ 0.8, 1.1, 3.5 & 5THz bectively. 1MHz resolution and c. integration time.
Observing Mode	-	IUtar Fower	Intermittent calibration required.
Limb Min./Max. Tangent Height	km	50/150	
Vertical Sample Spacing at Limb	km	1.5	Dow we need to overlap channel beam to FWHM?
Calibration Target Monitor	к	±0.1K accuracy	Preliminary estimate. Thermal control may be required.
Physical			
Dimension Front-End	cm	30x20x10	
Dimension Back-End	cm	30x30x20	Includes IF plate and three independent 2GHz spectrometers.
Combined front and back end volume	cm ³	24,000	Includes THz Front- and Back-Ends and support plate. But not cooler or antenna.
Operational Temperature			
Active Cooling Temperature	к	100	<100K preferred for QCL
Passive Cooling Heat Lift	w	6	Includes conductive and radiation heat leaks. Likely to reduce with improved QCL efficiency.
Telemetry Requirements			
Monitor and Control	bit/s	22k (max.)	Rate non-critical and intermittent system status review required. Mostly autonomous operation
Data Transmission	bit/s	~48k tbc	For 1MHz and 8bit resolution across 3x2GHz bandwidth. Can store and perform high-speed burst rate.


RAL Space

Ellison 2013

Proprietary Information of Surrey Satellite Technology US LLC. Subject to Non-Disclosure Obligation.

Payload Design and Development Needs



Subject to Non-Disclosure Obligation.

Mission Design Assumptions

- Dawn-Dusk sun synchronous orbit
- ~700 Km (around 98 degrees inclination)
- SSTL-150 spacecraft Sapphire variant (launched on the 25th of February 2013) as baseline
- Payload bay includes: Receiver, Cooler, Spectrometer, Antenna Assembly and Radiator
 - Payload mass = 50 Kg (RAL)
 - Payload power consumption= 96 W (RAL)
 - Payload bay overall dimensions = 80 x 40 x 65 cm (SSTL)
 - Receiver = 12.5 x 20 x 20 cm (RAL)
 - Cooler = 20 x 30 x 30 cm (RAL)
 - Spectrometer Electronics = 30 x 30 x 20 cm (RAL)
 - Main Antenna Dish = 50 cm diameter x 5 cm thickness (RAL)
 - Secondary Dish = 15 cm diameter (RAL)
 - Tertiary Dishes = 6 cm diameter (RAL)
 - Radiator Size = 60 x 40 x 3 cm (SSTL)
 - Harness not included in mass budget Proprietary Information of Surrey Satellite Technology S LLC. Subject to Non-Disclosure Obligation.

Satellite Critical Items Evaluation

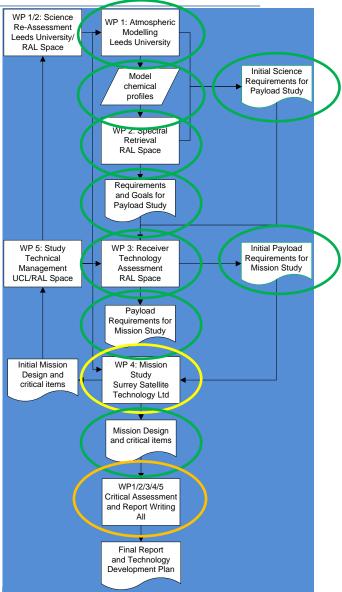
Proprietary Information of Surrey Satellite Technology US LLC. Subject to Non-Disclosure Obligation.

Status and Future Opportunities

Outline payload and mission design completed Identified critical areas for further study

Deployable solar panels

→ 84W heritage vs 96W needed Payload envelope/mass


→re-qualification of SSTL-150 spacecraft Deployable sunshield may be required Accommodation of electronics dissipation

→ thermal control
Second radiator for intermediate T intercept
2 min scan time

→ Further analysis of AOCS needed
QCL power output and integration into mixer
Submitted proposal for "In Orbit Demonstration"
of the system to ESA

→ Successfully through to next round – full proposal required 25th April

Papers submitted to ESA "Living Planet" and SPIE "Remote Sensing"

