

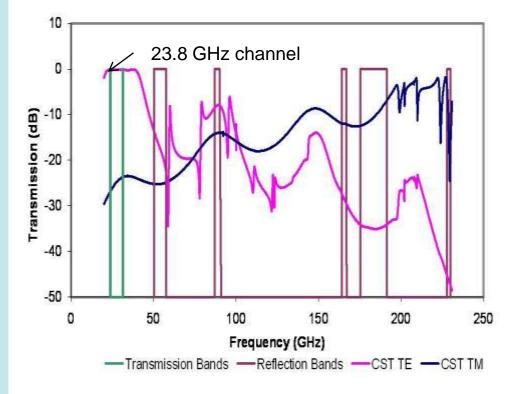
Finite Frequency Selective Surface Modelling

CEOI 5th Open Call

Final Presentation 20th March 2013

Location: BMA House, Tavistock Square, London

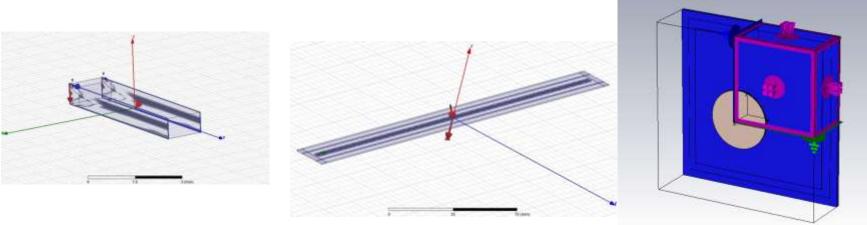
R. Dickie, R. Cahill, V. F. Fusco High Frequency Electronics Circuits



- The purpose of the project is to further develop the UK's expertise in electromagnetic modelling of finite FSS
- FSS are critical components in radiometer instruments used to direct the energy to receivers
 - QUB to provide accurate numerical prediction models for beam propagation and reflection
- Strengthens the UK's core instruments design capability by developing high performance computer models for incorporation into instrument design studies

Frequency Selection

• The 23.8 GHz channel has been selected to develop the finite FSS model as this receives the largest illumination in the QO system



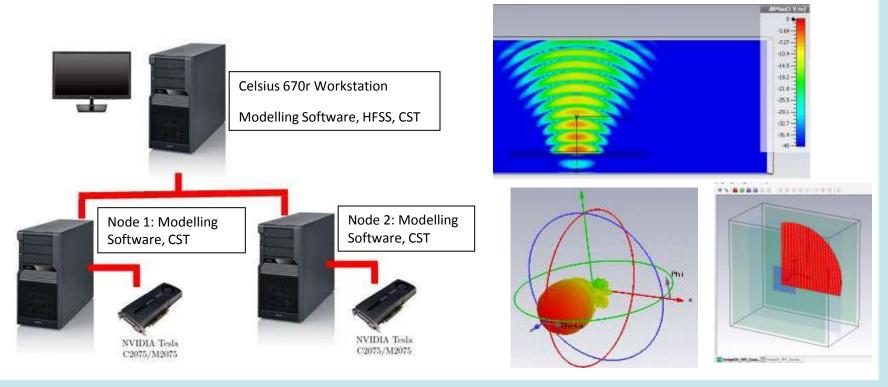
Parameter	Requirement
Transmission Bands	23.66 – 23.94 GHz 31.4 – 31.49 GHz
Transmission Insertion Loss	Target: 0.3 dB
Reflection Bands	50.21 – 57.67 GHz 87 - 91 GHz 164 - 167 GHz 175.3 – 191.3 GHz 228 – 230 GHz
Reflection Insertion Loss	0.3 dB
Incident Angle	45°
Physical diameter	250 mm

• This work builds on the ESTEC contract No. 22938/09/NL/JA to develop a FSS covering 23 – 230GHz.

ECIT | FSS Modelling Approaches

- Floquet theorem, unit cell method is currently used to provide S21 and S11 scattering from the FSS, but does not provide radiation patterns
- For finite beam illumination and radiation patterns, two approaches were investigated
 - Complete array modelling
 - Finite FSS setup using a linear array

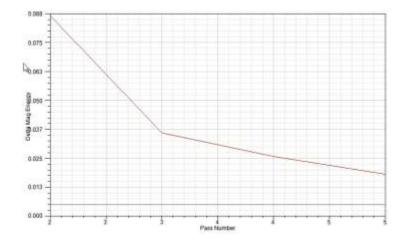
Unit Cell Method


Linear Array

Complete Array

ECIT Complete Array Approach

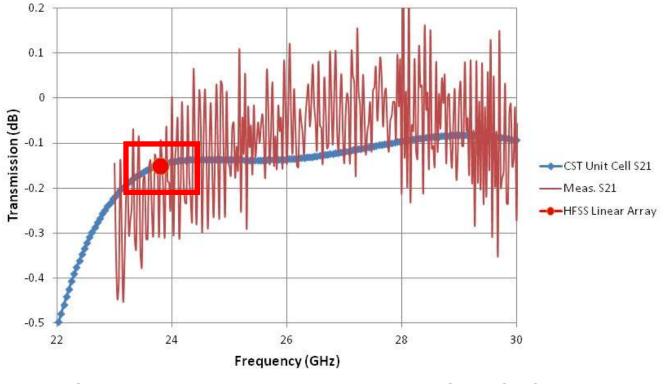
- Model requires a large volume to setup the Gaussian beam, CST TD Solver
- Modelling a significant challenge due to the 12.5 mm wavelength and small feature size of 0.03 mm, 1:420 ratio
- normal incident illumination 55 million mesh cells 79 hrs simulation time
- 45° incidence model requires 155 million mesh cells and is outside the two node GPU computing hardware capability


Hardware Setup

Finite FSS Modelling

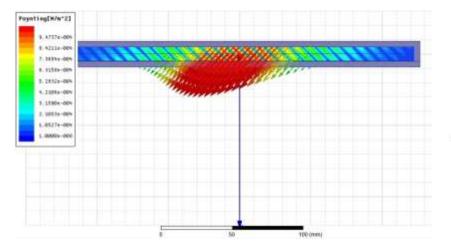
Linear Array Approach

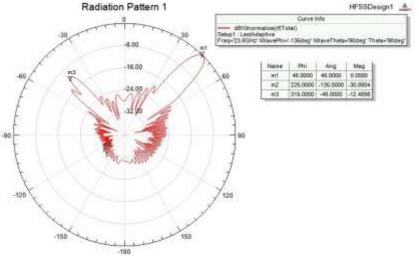
- Modelling carried out in HFSS's frequency domain solver
- Model shows good convergence with pass number
- High growth in tetrahedral mesh cells with pass number, to 3.4 million
 - 80 GB machine memory required



Model convergence

Model Validation

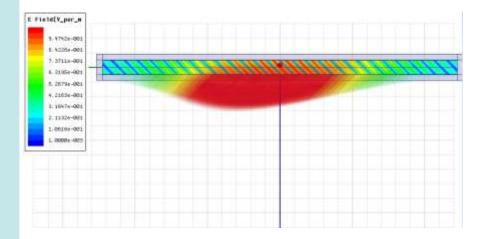

- S21 and S11 scattering calculations made on unit cell and linear array
- Good agreement with measured data and predictions, results shown for 23.8 GHz adaptively solved model



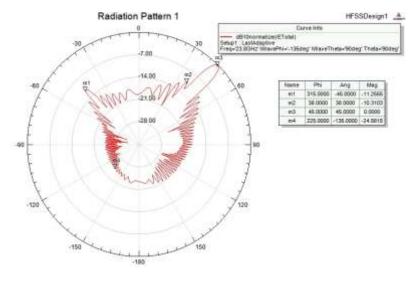
23 - 30 GHz transmission measurements carried out at RAL Space, STFC

ECIT | Finite FSS Modelling Results (1-2)

- 48 mm radius Gaussian beam incident at 45° TE on the array
- Propagation main lobe transmitted through the FSS at 45°
- The power reflected back in the direction of incidence is below -30 dB, shows low main beam side lobes at -20 dB



Electric field and power flow through the array plotted


Scattering radiation pattern

- Increased edge illumination, 80 mm radius
- Radiation pattern shows increased levels off the main propagation path
- Power reflected back in incident direction rises to -24 dB
- Main beam side lobes rise from -20 to -10.3 dB

Electric field and power flow through the array

Scattering radiation pattern

Goals and Achievements

- **Procurement Activities:** Procurement of GPU cards, memory and CST software
- **FSS Model Setup:** Two methods were investigated, linear array and complete array modelling
- **Model Convergence:** Development of the finite FSS model, good convergence to the highly accurate infinite array approach, and existing measured data
- Finite FSS Effects: Establish edge illumination effects at 23.8 GHz for 45° incidence
 radiation pattern plots
- **Reporting:** Final report giving final modelled results, model development, comparison with measurements

Positioning Achieved

- Presentations
 - The work reported in the report has/will be disseminated to our partners, and presented at the CEOI workshop
- Publications
 - Planned publication in IET Electronics Letters Journal
- Leverage achieved / Collaborations forged
 - This work particularly important for the MetOp-SG MWS instrument given that the breadboarding phase of the quasi- optical feed network has recently started and will be undertaken by a UK consortium consisting of QUB, RAL Space and QMUL

- Innovative modelling solutions developed to address new and increasingly demanding future mission requirements
 - Results that can be incorporated into QO network design studies
 - FSS models which can determine the edge effects when illuminated by a finite microwave beam
- The work addresses a critical technology need for the MWS instrument which is under development (Phase B) and scheduled for launch in 2020
- Strengthens UK expertise and capabilities in EO instrumentation
- Helps to position us, together with our industrial partners EADS Astrium UK and RAL, to bid for future work

Roadmap

Missions/exploitation route

- The work is aligned with the breadboarding phase of the MWS QO network phase which started in January 2013 by a UK consortium consisting of QUB, RAL Space and QMUL, as described in RFQ 3-13642/12/NL/BJKO
- MicroWave Sounder (MWS), MetOp-SG as described in MOS-SOW-ASU-001

Future steps / Technology development required

- Further development of the complete array modelling by increasing the hardware nodes
- Look at alternative solvers such as FEKO to determine if more efficient complete solutions can be obtained

Issues to be resolved

 Comparing the predicted radiation patterns with measured results, this will take place during the breadboarding phase of the MWS QO network