

Satellite Observations of Atmospheric Pollution and Their Value for Informing Policy

Martyn Chipperfield¹, Eloise Marais², Richard Pope¹, Chris Wilson¹

1. NCEO, University of Leeds

2. University College London

Atmospheric Composition: Science and Policy

Air Quality

UK National Atmospheric Emissions Inventory (NAEI)

(Controls production of ozone-depleting halocarbons)

Montreal Protocol: Recent Illegal CFC-11 emissions

LETTER (2018)

2 4

8

Change in emissions (10-10 g m-2 s-1)

10

https://doi.org/10.1038/s41586-018-0106-2

An unexpected and persistent increase in global emissions of ozone-depleting CFC-11

Stephen A. Montzka¹*, Geoff S. Dutton^{1,2}, Pengfei Yu^{2,3}, Eric Ray^{2,3}, Robert W. Portmann³, John S. Daniel³, Lambert Kuijpers⁴, Brad D. Hall¹, Debra Mondeel^{1,2}, Carolina Siso^{1,2}, J. David Nance^{1,2}, Matt Rigby⁵, Alistair J. Manning⁶, Lei Hu^{1,2}, Fred Moore^{1,2}, Ben R. Miller^{1,2} & James W. Elkins¹

Fig. 1 Observations of atmospheric CFC-11 over time. a, Hemispheric

https://doi.org/10.1038/s41586-01

(50%)

Increase in CFC-11 emissions from eastern China based on atmospheric observations

M. Rigby^{1,15}, S. Park^{2,15}*, T. Saito^{3,15}, L. M. Western^{1,15}, A. L. Redington^{4,15}, X. Fang^{5,15}, S. Henne⁶, A. J. Manning⁴, R. G. Prir G. S. Dutton^{7,8}, P. J. Fraser⁹, A. L. Ganesan¹⁰, B. D. Hall⁷, C. M. Harth¹¹, J. Kim¹¹, K.-R. Kim², P. B. Krummel⁹, T. Lee², S. Li¹² Q. Liang¹³, M. F. Lunt¹⁴, S. A. Montzka⁷, J. Mühle¹¹, S. O'Doherty¹, M.-K. Park¹², S. Reimann⁶, P. K. Salameh¹¹, P. Simmond R. L. Tunnicliffe¹, R. F. Weiss¹¹, Y. Yokouchi³ & D. Young¹

2021 Update

Article

A decline in global CFC-11 emissions during 2018–2019

https://doi.org/10.1038/s41586-021-03260-5 Received: 1 July 2020 Accepted: 11 December 2020 Published online: 10 February 2021 Stephen A. Montzka^{1©}, Geoffrey S. Dutton^{1,2}, Robert W. Portmann³, Martyn P. Chipperfield^{4,5}, Sean Davis³, Wuhu Feng^{4,6}, Alistair J. Manning⁷, Eric Ray^{2,3}, Matthew Rigby⁸, Bradley D. Hall¹, Carolina Siso^{1,2}, J. David Nance^{1,2}, Paul B. Krummel⁹, Jens Mühle¹⁰, Dickon Young⁸, Simon O'Doherty⁸, Peter K. Salameh¹⁰, Christina M. Harth¹⁰, Ronald G. Prinn¹¹, Ray F. Weiss¹⁰, James W. Elkins¹, Helen Walter-Terrinoni¹² & Christina Theodoridi¹³

Derived CFC-11 emissions (with dynamical correction from TOMCAT CTM)

Fig. 1 | **Measured atmospheric mole fractions of CFC-11 and global mean rate of change.** Monthly mean mole fractions and standard deviations (s.d.) measured at 12 remote sites from NOAA flasks by gas chromatography with

Global Inverse Modelling to find Sources of CFC-11

- Prior B: Global flux increase agrees with Montka et al ~13Gg/yr.
- Change in China is larger than global change, but countered by decreases in the West.
- Most of the increase has gone by 2019 but not all.

Chris Wilson | C.Wilson@leeds.ac.uk

Testing UK Emissions Inventory Using EO Data

- UK National Atmospheric Emissions Inventory (NAEI, <u>https://naei.beis.gov.uk/</u>) is database of best estimates of UK emissions of air quality pollutants and greenhouse gases.
- 'Bottom-up' emissions which use surface observations (e.g. Automated Urban and Rural Network AURN). Precise observations but a sparse network...
- Can satellite data be used to help constrain uncertainties in NAEI with 'top-down' emissions?
- NH₃ and NO₂ are air quality pollutants with (i) important emission uncertainties and (ii) good satellite observations.

Top-down NH₃ Emissions From IASI, CrIS and 3-D Model

Marais et al., J. Geophys. Res., accepted, 2021.

Eloise Marais | <u>E.Marais@ucl.ac.uk</u> | UCL

IASI-derived NH₃ Emissions at $0.1^{\circ} \times 0.1^{\circ}$ (~10 km)

NAEI (bottom up) minus EO-derived NH₃ emissions

Tropospheric Column NO₂

Satellite Instruments: OMI & TROPOMI

Host Satellites:Aura & Sentinel 5 – PrecursorLaunch Date:15th July 2004 & 13th October 2017Overpass Time:13.30 LT & 13.45 LTResolution at Nadir:7 km × 7 km & 13 km × 24 kmSpectral Viewing:UV-Vis & UV-Vis-NIR-SWIR

Oversampling Methodology (Pope et al, 2018)

Increased resolution: $OMI = 5 \text{ km} \times 5 \text{ km}$ $TROPOMI = 2.5 \text{ km} \times 2.5 \text{ km}$

High Resolution Column NO₂ versus NAEI

TROPOMI (S5P) provides the highest horizontal resolution measurements of air pollutants.

TROPOMI tropospheric column NO₂ (TCNO₂) data is mapped onto $0.025^{\circ} \times 0.025^{\circ}$ (~2-3 km) grid for comparison with NAEI NO_x emissions.

Despite representing different quantities, for UK cities we find significant spatial correlations of \sim 0.5-0.6 between TCNO₂ and NO_x emissions.

Gives confidence in the spatial representativeness of the emission sources.

TROPOMI TCNO₂ (Feb 2018 – Jan 2020) : $\times 10^{-5}$ moles/m² NAEI NO_x Emissions (2016): μ g/m²/s

National Centre for Earth Observation

Richard Pope | R.J.Po

Satellite (top-down) v NAEI NO_v Emissions

Simple mass balance approach to downwind TROPOMI plumes from 12 UK cities.

Low bias in NAEI of ~28%, driven by NAEI underestimates at large cities such as London and Manchester - outside of uncertainty range in the satellite estimates.

GEOS-Chem 3-D model run for 2019 with the NAEI emissions (2016 scaled to 2019) shows consistent underestimation in simulated column NO₂ compared with TROPOMI.

Conclusion: NAEI may underestimate NO_v emissions in e.g. London and Manchester.

- Earth observation data has been essential in the creation of the Montreal Protocol (detection/attribution of ozone depletion) and verifying it's success so far (ozone recovery).
- Ground-based data detected the global, non-Protocol-compliant (illegal), increased emissions. Inversion-modelling / flux attribution has been essential for assigning the source of the emissions. Alarm/global
- EO data can be used to improve uncertainties in national-scale, 'bottom-up' emissions inventories for certain important pollutants, again with some form of flux estimation.
- UK NAEI: May underestimate NH₃ (dairy farming) and NO₂ (large cities) emissions.

