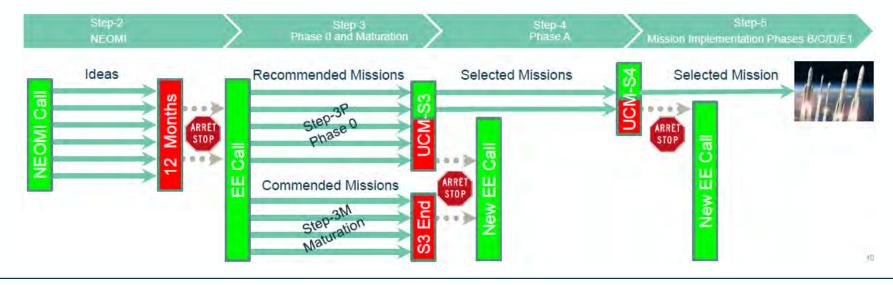
NEOMI (New EO Mission Ideas) – 250 k€ scientific studies initiated end of 2022 ; New Call in 2024

Continuous flow for creating new mission concepts (with SRL =3) \rightarrow to become candidate mission concepts for Earth Explorer Calls

PoSARA: UCL (UK) with Univ. Manitoba (CA), Univ. Northumbria (UK), Leeds University (UK).


• study of polarised altimeter echoes to simultaneously retrieve elevations of the upper and lower interface between snow and sea ice and land ice.

SLAINTE (Sub-daily Land Atmosphere INTEractions) - led by TU Delft (NL) with sub-co: TU Wien (AT), Univ. Edinburgh (UK), Ghent University (BE), CNR-IRPI (IT), and MPI-BGC (DE).

- exploitation of sub-daily land-atmosphere interactions based on a microwave SAR (C-band) in a MEO or LEO orbit.
- Already proposed for EE-12

Nightwatch - led by GFZ Potsdam (DE) with sub-co from Cégep de Sherbrooke (CA), IGB (DE), Stars4All (ES) and University of Twente (NL).

- exploiting the connection between artificial night light and societal and environmental issues based on a Hi-Res multi-channel optical sensor.
- EE-12 EULE was derived from this NEOMI Activity

Technology developments within System Studies

Phase 0/A System studies are co-funded: FutureEO + Preparatory (part of DPTD Basic Activities) EE-11 phase 0/A : significant increase for Technologywell above average (< 40 %) of System Studies

On-going in 2022:

- 6 missions in Phase 0
- 5 missions in Phase A/B1

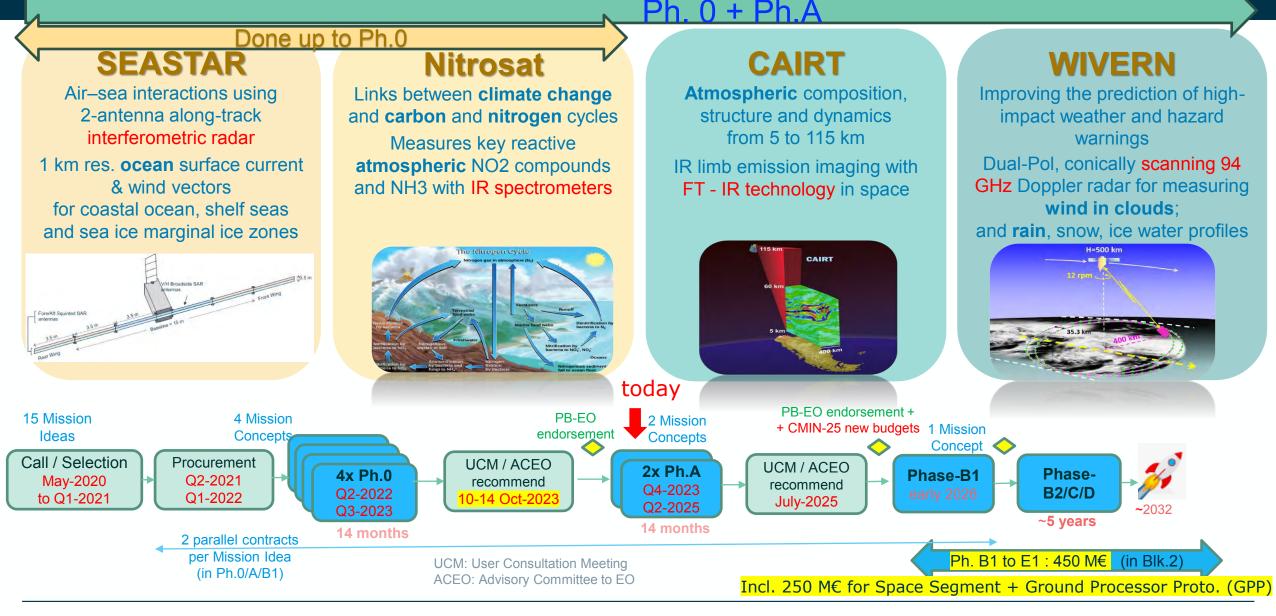
Much more than one decade ago.

ESA acknowledges the importance of technology Increase : increase of $\frac{1}{1}$ to $\frac{1.5 \text{ MC}}{1.5 \text{ MC}}$ per study in recent Ph.A studies

Increasing % in technology (> 40%, up to 63%)

		Phase	<mark>M€ per study</mark> (2 parallel studies)	Techr M€	ology par
	EE-9	А	3.5	1.5	4 3%
	(Skim, Forum)	B1	4.5	1.5	33%
	EE-10	0	1	0.4	40%
	(Harmony, Hydroterra, Daedalus)	А	3.5	1.5	43%
	EE-11	0	1.3	0.4	30%
/	CAIRT, WIVERN, Ph.0/A Nitrosat, SEASTAR : Ph.0 only	Α	4.5 <mark>+ 1</mark>	2.5 <mark>+ 1</mark>	63% (55%)
	EE-12	0/A			
·	CO2M, CRISTAL, CMIR, ROSE-L	A/B1	5	1.8	36%
	LSTM, CHIME	A/B1	6	2	33%
	NGGM	А	4.5	Next slide	
	S1-NG	A/B1	5.5	1.6	29%
	S2-NG	A/B1	6 <mark>+ 0.5</mark>	2.5 <mark>+ 0.5</mark>	45% (41%)
	S3-NG Opt.	A/B1	6 <mark>+ 1.5</mark>	2.5 + 0.5	53% (41%)
	S3 Topo-NG PhA/B1 + S6 NG Ph.A	A/B1	6	1.6	27%
	Aeolus-2	A2/B1	2	N	ext slide

Additional technology developments (by FutureEO)

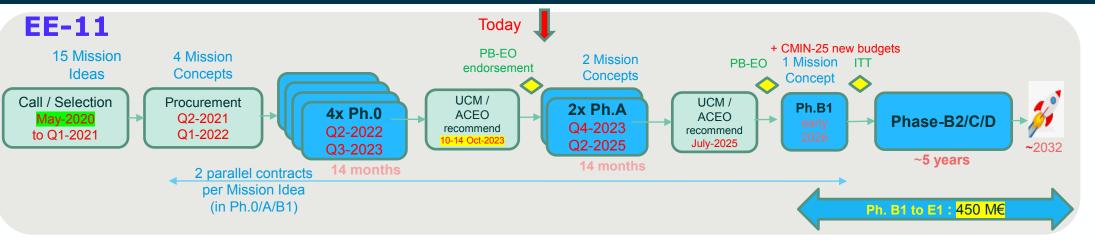


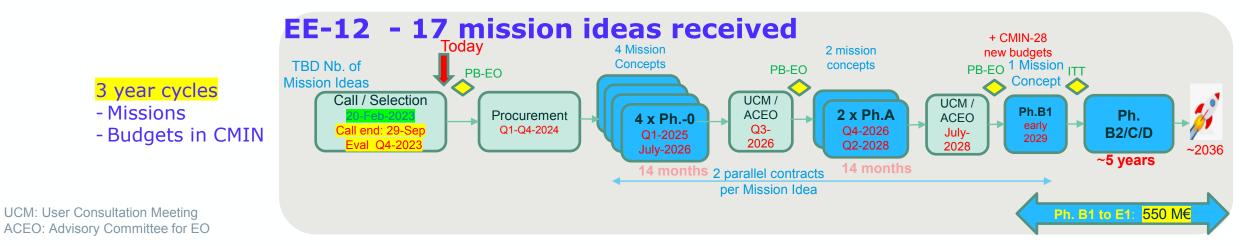
Some mission concepts have additional technology pre-developments

		Phase	M€ per study	Additional technology activities
Satellite 1 d Satellite 2 F_{01} D_1 $Ad = \Delta d_0 + \Delta d_0$ B_2 Earth Earth	NGGM – MAGIC Next Gen. Gravity Mission ission of Opportunity (MoO) with NASA		4.5 M€	15.5 M€ Laser Tracking instrument, Propulsion, accelerometer
→ → Vind	Aeolus-2	A2/B1	2 M€ (not incl. P/L)	21.8 M€ UV Lidar Instrument consolidation, 2x Transmitter Laser, Detector Emission Beam Expander Beam Steering Mechanism Double Field compensated Michelson Interferometer
	t-1 – recently selected as Scout-2 TANGO + NanoMagSat)			8.9 M€ * Risk Retirement Activities (RRA)

Earth Explorer 11 Candidates

Earth Explorer 11 – Mission Concepts




			Previous Calls	Title	RF - Optical	Instrument	Freq.	Preliminary Techno needs	Applica tion
ded	H	WIVERN	EE-10	A 'WInd VElocity Radar Nephoscope'		Conical scanning radar (3 m diam., 12 rpm)	94 GHz	 Rotating Antenna and free space Rotary joint HPA: isolator, ferrite switch 	Atmos Phys
mmen	0/A/B	CAIRT	EE7 Premie EE10 CAIRO	The Changing-Atmosphere IP Tomography Evplorer	Optical	Limb sounder Fourier Transform	IR (4.5 to 14 um)	- Detector - ROIC - Fast FE Electronic - Dichroic optics - Back optics	Atmos comp
U I	Ph.	SEASTAR	EE-8, EE-9, EE-10	Submesoscale dynamics and small-scale atmosphere- ocean processes in coastal, shelf and polar seas.	RF	InSAR	Ku band (13.5 GHz)	- Antenna radiators - Klystron HPA - COATS metrology sys	Ocean
		Nitrosat	EE-8, EE-9, EE-10	Mapping reactive nitrogen at the landscape scale	Optical	- Imaging FT (Hyper) Spectrometer (IFTS) - Imaging pushbroom spectrometer	- 900 - 1000 cm-1 for NH3 - 350 to 700 nm for NO2	 Imaging Motion compensation mirror LWIR Detector 	Atmos comp
>		KEYSTONE	EE-9, EE-10 (as LOCUS)	Chemical and thermal structure of the upper atmosphere (50-250 km).	Optical	- THz heterodyne radiom. - IR radiometer - UV/VIS spectrometer (limb sounding)	0.8,, 4.7 THz, 4.27 -15.2 um, UV/VIS (new)	- Quantum Cascade Laser - THz Schottky mixers	Atmos comp
ended		STREAM	Extended SKIM (EE-9)	Surface TRansport, ocean Energy, Air-sea fluxes and Mixing		- STREAM-R: connical scan Ka radar (3 m diam., >25 rpm) -STREAM-O hi-res Optical	-Ka band (37.75 GHz) ~ as S2	 OB processing Rotating antenna LNA STREAM-O: μ-vibrations, pointing knowled 	Ocean
<mark>Commended</mark> Maturation only		CRYORAD	EE-10	Low freq. wideband radiometer - study of the cryosphere	RF	nadir Ultra Wideband spectro- radiometer (12 m antenna)	- 0.4 to 2 GHz (RFI critical)	 Digital Beamforming RFI detection & mitigation LNA Large Deployable Reflector Ultra Wideband feed 	Cryosphere
		STRATUS	EE9, EE-10	SaTellite RAdar sounder for earTh sUbsurface Sensing (1 sat Tx + 4 sats Rx)	RF	Sounder	- VHF (40-50 MHz)	- High Power Amplifier - Matching network & antenna - Formation Ctrl techno	Cryosphere

Also positive feedback by ACEO for others: e.g. SnowCube, 2 Lidars (QSAT, ATLAS), N8, Scadi, Min2OS

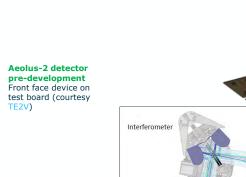
Earth Explorers (EE-11, EE-12) candidate missions Continuous flow

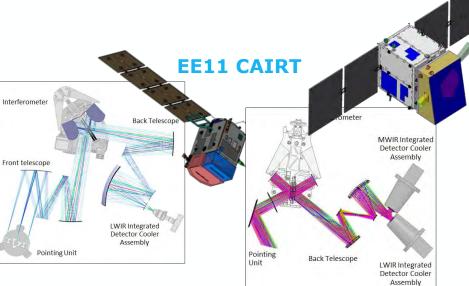
Optical Instruments & technologies

Snapshot of optical activities (UK-perspective)

- AEOLUS-2 Ph. A/B1 (UV Lidar for wind)
 - Ph. A/B1 System Studies (ADS-UK, TAS-UK)
 - Improved detector capability (TE2V)
 - New instrument pre-developments of Spectrometer, Beam expander and steering mechanism are about to be initiate

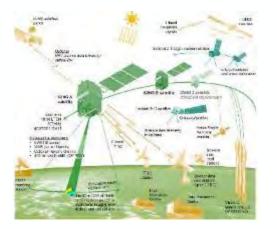
• EE11 CAIRT Ph. A (IR Limb Sounder)


- Key subcontractors and suppliers Ph.0: Leonardo-UK Detector
- Potential additional pre-developments in Ph.A on IR Coatings, Dichroic filters


KEYSTONE – EE11 Commended Mission / EE12 Mission Idea

- THz & IR Limb sounding radiometry (PI: RAL Space)
- Technology needs: Quantum Cascade Laser & THz Schottky mixers

Incubed: MANTIS & SAT4EO


- MANTIS: VIS-NIR (3m GSD), 4-Band Dual Telescope w/ on-board super resolutions & cloud detection (Open Cosmos). Launched Q1 2024
- SAT4EO: VHR (0.6m GSD), Super Res. (0.3m GSD)Compact VIS-NIR Telescope (Deimos, SSTL). Using the detector developed by E2V under UK-CEOI

Sentinel-2 NG mission objectives: LAND driven

Provide enhance capabilities with respect to Sentinel 2 by

- Improve revisit time to 3 days
- Improve spatial sampling distance by a factor of 2 along and across track
- Potential additional spectral bands to meet new/emerging user needs

Sentinel-3 optical NG mission objectives: OCEAN driven

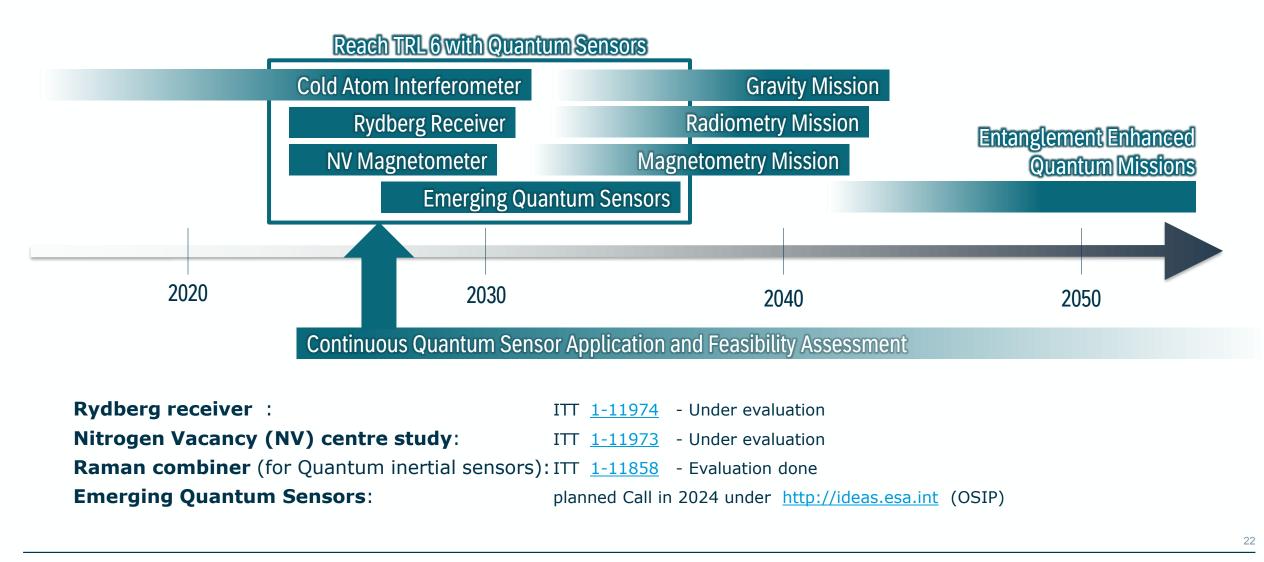
Provide enhance capabilities with respect to Sentinel 3 by

- OLCI: increase the spatial resolution instrument to 150 m
- OLCI: increased number of spectral bands
- SLSTR: Spatial resolution to 500 m for all bands and additional spectral bands

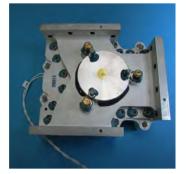
Sentinel-2 NG & Sentinel-3 NG Optical

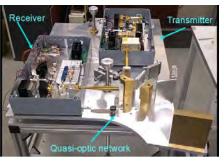
SENTINEL - 2 NG

- Application: Agriculture, forestry, inland waters and wetlands, land cover, land use, biodiversity, coastal marine zones
- Up to 17 spectral bands (goal) from ca. 443 to 2190 nm, spectral widths 15 to 90 (180) nm
 - → Ground sampling: 5 to 30 m (goal) @ ca. 300 km swath
 → large image field
 - large telecentric telescope
 - large number of detectors, staggered assembly \rightarrow large number of pixels \rightarrow high datarate
- Significant increase in requirements from Sentinel-2, especially wrt. min. spatial resolution from 10 m to 5 m
- Phase A/B1 to be started shortly (under EOP-P)
- Pre-developments as part of phase A/B1 studies (VIS detector, filters, dichroic)
- Pre-development SWIR detector: ESA ITT to be issued


SENTINEL-3 NG Optical

- Application: ocean
- 2 instruments
 - \rightarrow Advanced Ocean and Land Colour Instrument (AOLCI)
 - \rightarrow Advanced Sea and Land Surface Temperature Radiometer (ASLSTR)
- Enhanced continuity wrt OLCI and SLSTR from Sentinel-3
 - \rightarrow 2x better spatial resolution
 - \rightarrow More spectral channels
 - → Better SNR
- Phase 0 activities completed with TAS/Leonardo and OHB/ADS
- ITT phase A/B1 (*2) issued: this includes pre-developments with expected focus on; Detectors (VIS, SWIR, MWIR/TIR), Grating (VIS), Filters (IR)


Microwave Instruments & technologies


Snapshot of microwave activities (UK-perspective)

- STRATUS
 - 1 breadboard of a VHF Deployable Antenna and RF matching network and documentation (target TRL 4)
 - Contract: EOSOL [ES] as prime, and COMET [ES], Open Cosmos [UK], AeroXess [DE], UPV [ES] as subcontractors
- C-Band Switches and circulators
 - Future Scatter meters and Synthetic Aperture Radars missions operating at Cband e..g, Hydroterra (EE-10 Ph.0)
 - 2 parallel contracts awarded to COMDEV [UK] and HARP [FI], TRT [FR]
- G-Band Radar atmospheric missions
 - G-band radar to provide a better characterization of cloud and precipitation vertical structure
 - Contracts: : STFC RAL Space [UK], Politecnico di Torino [IT],

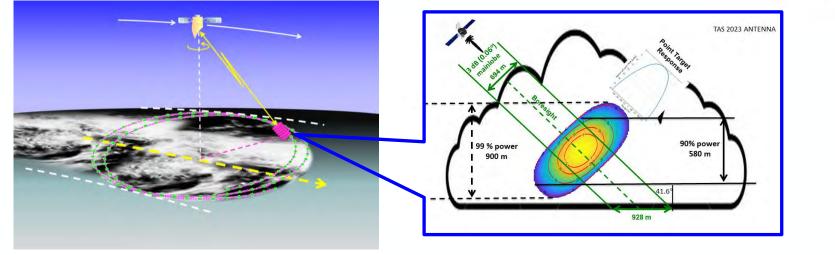
EE11 Commended mission pre-developments

METOP SG C-band Ferrite switch (image credit: COMDEV International)

GRACE G-Band Radar for Cloud Evaluation (image credit: STFC RAL Space)

VHF Deployable Antenna

Activity Title (with 500+ k€ each)	Potential applications	Companies
L-band internal calibration subsystem for wide band radiometers	CRYORAD	Sener + ADS [ES]
Wideband L-band integrated LNA	CRYORAD	TAS [IT]
VHF High-Power SSPA	STRATUS	TTI [ES]
Very Wideband VHF Deployable Antenna and RF matching network	STRATUS	EOSOL [ES]
Ku- and Ka-band GaN LNA	STREAM, SKADI, SEASTAR, SnowCube	TAS [FR]
Ku- and Ka-band high power low loss ferrite switches and circulators	STREAM, SKADI, SEASTAR	HARP [FI]
C-band very high-power low loss ferrite switches and circulators	Hydroterra, METOP NG SCA	Honeywell [UK]



EE11 Ph. 0 & Ph. A: In-cloud wind products and Cloud & Precipitation products

(Rain/snow rates, Liquid Water Path, Ice Water Content) (Rain/snow rates, Liquid Water Path, Ice Water Content)

- > W-band (94 GHz, 3 mm, sensitivity to clouds)
- **Big** >3 m **antenna** ($\theta_{3dB} \approx 0.07^{\circ}$) (vert. res. 600 m, hor.res. < 1km),
- ~12 rev./min Conically scanning at 42° (830 km swath)
- > Doppler capability (polarization diversity) for measuring large line-of-sight (LoS) horizontal winds
- Radiometric mode with km-scale resolution and ~2 K relative accuracy

Next SCOUTS (current plan)

Long Term (2040) Vision : Many more missions to come
 → Technology is the key enabler to push the FRONTIERS of EO
 → Promote data uptake: interconnection and action-able EO data

Programmatic Simplification :

 \rightarrow Merging programmes: FutureEO , incl. Digital Twin , ...

- \rightarrow Copernicus
- →InCubed

→ THE EUROPEAN SPACE AGENCY

The <u>EO Technology needs</u> keep <u>growing fast</u> (more than the resources) → Science new strategy → opportunity to <u>focus the technology</u> too

\rightarrow Continuous flow + New Frontiers \rightarrow more EO missions and technology to come

→ UK substantial involvement and input into ESA EO Technology

EOP Technology needs (incl. European independence)

- New + higher performance (EO instruments) + Higher efficiency (incl. platform / operations)
- <u>Market pull</u> (User driven: EE, Copernicus, Meteo) + <u>Techno push</u> (enabler for <u>new</u> <u>Mission Calls</u>)
 - Driven by institutional (Large Satellites), but Instruments for Small Sats too (Scouts, commercial)

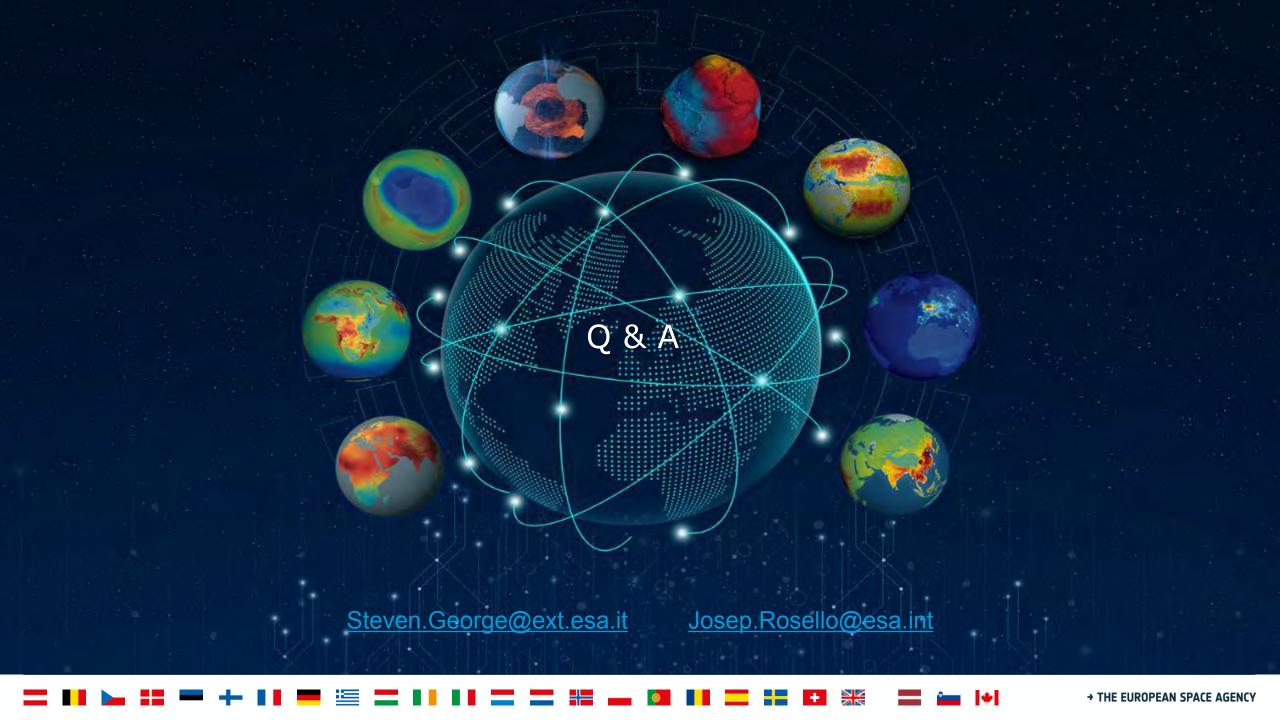
FutureEO Programme

- Unique synergizer to build the whole range of ESA EO missions
- EO architecture grows

National ...

Commercial

in³



Take away(s)

FutureEO - Blk.1

Mission Definition

Technology + Science/Apps

