

G-band Cloud Radar: Recent results and the route to space

Hui Wang, P. G. Huggard, Simon Rea, R. Reeves, G. Howells, C. Walden: STFC RAL Space
S. Froud, R. Albers, T. Walker & R. Wylde: Thomas Keating Ltd.
B. Courtier: University of Leicester
A. Battaglia: University of Leicester, Politecnico di Torino
D. A. Robertson: University of St Andrews
C. Westbrook, K. McCusker: University of Reading
P. Kollias: McGill University
L. Richter: Large Space Structures GmbH

CEOI Emerging Technology for Earth Observation Conference 19-20 March 2024

The GRaCE project

- Ground based science and technology demonstrator for a future space radar
- Clouds and ice characterisation are important for precipitation & climate change models
- Monostatic, pulsed, Doppler, zenith looking, solid state radar
- Frequency, 199.5 GHz, set by OFCOM and atmospheric transmission

The GRaCE project - Science

<u>Problem</u>: cloud feedback is the major source of **uncertainty in climate sensitivity** (from 1.5 up to 4.5° C) \rightarrow better characterization of cloud & precipitation vertical structure and microphysics is needed

Solution: Combining multi-frequency radar observations, from 10 to above 200 GHz, allows characterizing from heavy precipitation particles to small-size ice crystals. Inclusion of GRaCE highly beneficial in three areas: **boundary layer clouds, cirrus and mid-level ice clouds and**

Why 199.5GHz?

КĶ

Why 199.5GHz?

既

Why 199.5GHz?

Upgraded with second channel at 192GHz (Dec. 2023)

KK

GRaCE hardware

RAL Space

GRaCE at Chilbolton

RAL Space

Science and Technology Facilities Council

First light of GRaCE

Comparison with co-located 94 GHz kW pulsed Galileo radar

Courier et al., 2021, GRL

- Rain event on May 24th 2021, freezing level at around 1 km (UK "summer" atmosphere conditions)
- Science Technolc Facilities

RAL Space

- Observations to ≈ 5 km altitude
- Reduced dead zone close to the ground
- GRACE reduced reflectivity arises from attenuation and non-Rayleigh effects

First ever 200GHz Doppler results

- Distinguish fall velocities of ice and rain
- Doppler spectra in rain present peaks and valleys → raindrops are non Rayleigh targets at 200 GHz → specific sizes produce constructive or destructive interference of the backscattering cross sections → "Mie notches"

RAL Space

Scie

Tecl

Facilities Council

Courier et al., 2022, GRL

G-Band Spaceborne Radar – ESA Study

- To develop baseline mission concepts for two class of mission
 - SCOUT: compatible with micro satellite approach, 30MEuro budget
 - Earth Explorer: high reliability, high resource platform, ~350MEuro budget
- To identify low TRL technology so development programmes can be planned
- RAL led with support from:
 - Scientists from Politecnico di Torino and McGill University, Canada
 - Thomas Keating Ltd (quasi-optics)
 - Large Space Structures GmbH (large deployable antennas)

SCOUT Mission

Parameter	Value
Frequency	G-band, 238 GHz
Polarisation	Single, circular
Transmitter	Solid-state, 0.1-0.2W
Antenna size	1.5m deployable reflector antenna
Pointing	Nadir only
Instrument Modes	Mode 1: Tropics, max. sensitivity @ 5km altitude Mode 2: Polar, max sensitivity at Earth's surface
Noise Mode	Included – measurement of Earth's brightness temperature
Redundancy	None
Orbit	400-500 km
Launcher	Vega-C or Ariane 6

SCOUT G-Band Instrument Block Diagram

- Limited to solid-state transmitter technology
- Need to maximise antenna size to improve radar sensitivity
- Nadir viewing only no swath requirement

SCOUT Mission

- Payload mass: 50kg
- Payload Power: 100W
- SSTL300 Platform

316

Vega-C accommodation (Blue Cylinder)

Science and Technology **Facilities** Council

Centre-fed REVOLVE "origami-folded" reflector, 0.5m, Ka-band (credit: LSS GmbH).

> Pre-development required to reach 1.5m diameter and surface finish for operation at G-band. QON included in predevelopment to demonstrate Tx/Rx isolation.

EE Mission

Parameter	Value
Frequency	G-band, 238 GHz; Ka-band, 35.75 GHz (2 separate radars)
Polarisation	Single, circular
Transmitter	EIK: G-band 0.1kW, Ka-band 2kW. 5% duty cycle.
Antenna size	G-band: 2m solid; Ka-band: 7m (deployable)
Pointing	Nadir + swath (swath between 1.25-10 km)
Instrument Modes	High sensitivity (fine cloud structure) High vertical resolution (precipitation)
Noise Mode	Included – measurement of Earth's brightness temperature
Redundancy	Tx unit output driver amplifier, EIKA and PSU, DSP unit, ICI, Rx unit
Orbit	400-500 km
Launcher	Vega-C

- Ka-band companion radar (differential measurements)
- Nadir + swath: mechanically scanned sub-reflector on both radars. Swath requirement adds significant complexity/cost for limited increase in coverage. Swath requirement requires further assessment.
- EIK Tx on both radars

RAL Space

EE G-Band Instrument Block Diagram

EE Ka-Band Instrument Block Diagram

EE Mission

2470

550

Reflector

FIKA1

EIKA PSU2

2040

RAL Space

IKA PSU

DSP₂ DSP1

Science and Technology

- G-Band Payload mass: 240kg
- G-Band Payload Power: 270W

- Ka-Band Payload mass: 475kg
- Ka-Band Payload Power: 615W

5180

900

15

EE Mission

- Airbus Astrobus Platform
- Vega-C launcher

Conclusion

- G-band radar performance has been demonstrated via GRaCE.
- GRaCE observations and data analysis continue to support a better understanding of the potential of the data.
- ESA study will complete in March. Next steps:
 - G-band radar airborne demonstrator ITT expected from ESA soon.
 - Lobbying for proposed technology pre-developments to be included in ESA's Technology Development Programme
 - SCOUT type mission is a more realistic near-term goal

Acknowledgements

- GRaCE is grant funded by the UK Space Agency through the UK Centre for Earth Observation Instrumentation
- GRACES NERC grant, with Universities of Reading and Leicester
- G-band Spaceborne Radar for Atmospheric Observations, ESA contract led by STFC with Politecnico di Torino, McGill University, Thomas Keating Ltd, Large Space Structures Ltd

Science and Technology Facilities Council