

CEOI Emerging Technologies Conference:

Latest Detector Developments in UV/VIS & IR Teledyne e2v Space Imaging Andrew Pike

Agenda

CEOI Emerging Technologies Conference

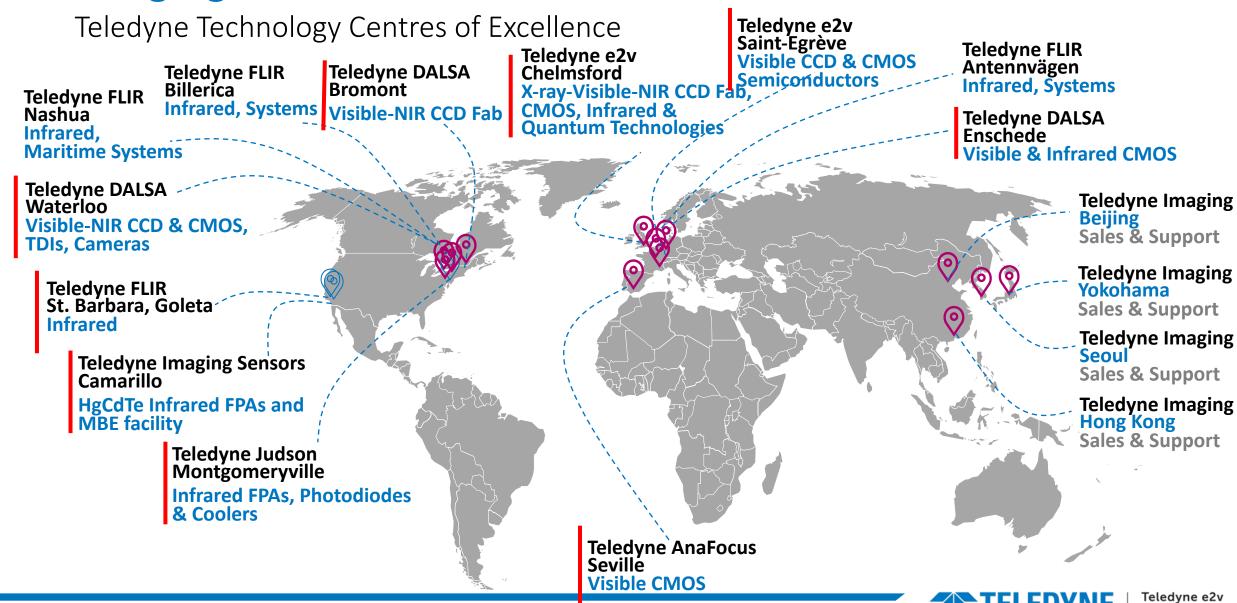
Teledyne Intro

Technology & Capability Overview

High Resolution Earth Observation

Large Area CMOS

Short Wave Infrared

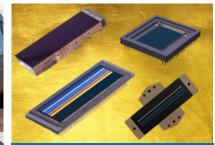

Commercial Space

Technology Impacts

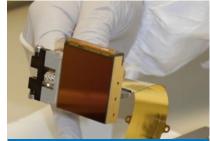
Space Imaging

Imaging Sensors

Teledyne e2v Space Imaging


Imaging technologies from X-ray to Visible to Infrared

Responding to demands for greater electro-optical performance, spatial resolution, spectral resolution and data handling solutions for Earth Observation


Teledyne Imaging

Technologies available from across Teledyne Single point for space imaging solutions in UK

CMOS

Expanding the CMOS platforms for space High performance sensors Area | TDI | NIR Low Noise

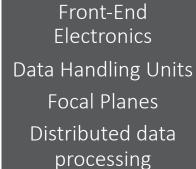
Infrared

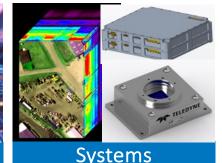
HgCdTe (MCT) (US & European)

Hyperspectral imaging across VIS to SWIR

> ROICs for MWIR/LWIR

Foundries & Coatings

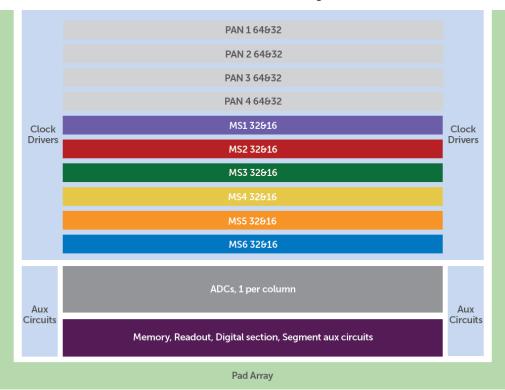

X-Ray to NIR Backthinning – 8 inch CMOS Coatings - UV to NIR Black coating



Semiconductors

Space Advanced Edge Computing Platforms Processors, Memory &

Converters



High Resolution Earth Observation Detectors

- Established UK supply chain of CMOS TDI detectors for high resolution EO
- Leveraging latest CMOS blocks from across Teledyne and internal CMOS developments
- Demonstrated CCD-on-CMOS for high performance SNR, FWC & MTF

CMOS TDI CIS125 architecture Block diagram

CMOS TDI CIS125 top level product information

Specification	Front-side illuminated (FSI) and backside illuminated (BSI)				
PAN channels	4 Panchromatic bands (P1, P2, P3 and P4, with half pixel offset)				
MS channels	6 Multispectral bands with 2 subarrays per band				
Pixel pitch	PAN: 5μm x 5μm MS: 10μm x 10μm				
Number of columns	PAN: 16k / MS: 8k				
Full Well Capacity (per array)	PAN: 30 ke- / MS: 80 ke-				
Max. Line Rate	PAN: 40kHz MS: 40kHz Default Operating Mode: 14.7kHz				
Read-out speed	40Gb/s (20 parallel 2Gb/s CML channels)				
Power Dissipation	≤ 10 W				
Other features	Antiblooming, Bidirectional, Radiation Tolerant, Optional Integrated MS Filters				
TRL Level	TRL 5: Flight model qualification in progress				

High Resolution Earth Observation Detectors

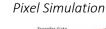
EO Technology Development

Design & Development

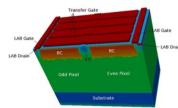
- CIS123 test chip platform for CMOS TDI CCD-on-CMOS R&D
- Benefits from Industrial-Academic Collaboration with Centre for Electronic Imaging at the Open University – New way of working established
- Standardised electrical interface across Teledyne e2v digital detectors
 - For example, high speed CML data output to simplify interface with Electronics

CEOI funding accelerates product development:

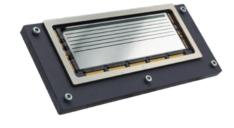
• Product prototype phase (2018 – 2021) and next generation of CMOS TDI pixel (2023 – 2024)


Manufacturing and test capabilities established:

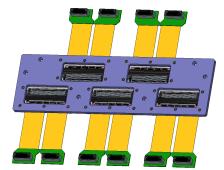
- New black coating process to minimise straylight
- Multispectral filter integration


Next Developments:

- Systems solutions for front-end electronics and focal plane arrays
- Demo kit availability

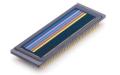


CIS123 Test Chip

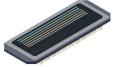


CIS125 Detector Assembly

Focal Plane Array Concept



TDI CMOS at a Glance

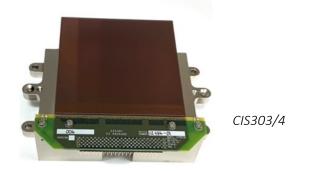

Space Imaging established as single point of contact for full Teledyne CMOS TDI family

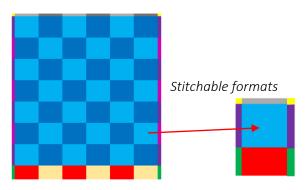
Impacts of new technologies:

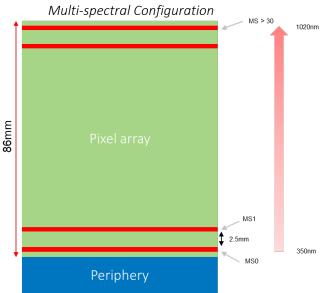
- CIS125 adds high performance detector to CMOS TDI family of products
- Enables next generation of high-resolution earth observation detectors
- Contracts with new and established space Customers
- CIS125 EM & FM product delivery started 2024
- Global pipeline across Asia, Europe and US
- First CIS125 FM launch in 2025

Performance Specifications		IC-49-12K2	IC-51-12K2	IC-51-12K3	IC-52-12K2	CIS125-40
Number of pixels	PAN	12288	12288	12288	0	16000
	MS	3072	6144	6144	12,288	8000
Bands	PAN	2	2	2	0	4
	MS	4	6	6	6	6
Pixel size (μm)	PAN	7	7	7	N/A	5
	MS	28	14	14	7	10
Full Well Capacity (ke-)	PAN	≥ 70	≥ 80	≥ 100	N/A	≥ 30
	MS	≥ 280	≥ 240	≥ 300	≥ 85	≥ 80
Read-out speed at max. line rate (kHz)		2.2 Gb/s via CML interface @ 55MHz input master clock	2 Gb/s via CML interface @ 100MHz input master clock	2 Gb/s via CML interface @ 100MHz input master clock	2 Gb/s via CML interface @ 100MHz input master clock	40Gb/s (20 parallel 2Gb/s CML channels)
Power dissipation (W)		≤ 6	≤ 7.5	≤ 7.5	≤ 10 W	≤ 10 W

New Area CMOS Detectors


CIS300 Family for Earth Observation

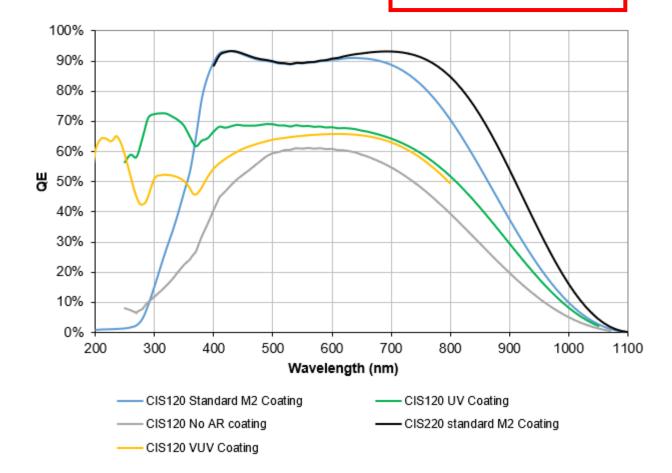

Flexible large format CMOS imager:


- High electro-optical performance in radiation tolerant platform (low noise, high FWC, dual gain)
- Flexible operation rolling shutter, global shutter and HDR operation
- Stitchable design enabling different formats
- 10μm pixel pitch baseline readily scalable to 5μm, 20μm or 40μm with minimal NRE
- Available as standard Si or as CMOS HiRho
- Initial prototypes manufactured in 9k and 4.5k formats

Mission enablement:

- Baselined for Copernicus next generation missions
- Baselined for GEOXO Lightning Mapper (LMX) for NASA
- Suitable for area imaging or multi-spectral up to 30 channels

Spectral Response UV to NIR


Process and Coatings Development

- Processes developed enable higher performance quantum efficiency across broader range.
- Key technology enablers
 - 8" back-thinning

- CMOS HiRho for NIR In collaboration with CEI
- X-ray variants In collaboration with CEI
- UV coatings

High QE on a large spectrum with one silicon

Short Wave Infrared

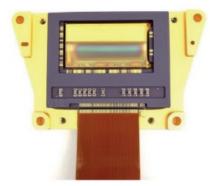
CHROMA-D SWIR MCT

Technology:

- Teledyne manufactures high performance HgCdTe (MCT) IR material
 - Detection over 400nm (UV) to 14.5um (LWIR) spectral range
 - Fully flexible and precise cut-off wavelength control
 - High EO performance high QE, low dark signal
- Teledyne hybridise to either analogue or digital output ROICs
 - ROICs are stitchable enabling different format detectors

Developments:

- Teledyne e2v opened new European supply chain of high-performance SWIR detectors
 - UK development of packaging and test capabilities established
 - Use MCT material with 2.5 μm cut-off on CHROMA-D digital output


Impacts:

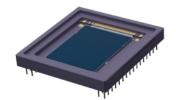
Selected for key missions benefitting science and society:

- Copernicus CHIME mission Hyperspectral spectrometer to map changes in land cover and sustainable agricultural practices.
- TRUTHS missions Radiometric calibration for climate measurements

CHROMA-D SWIR 3k x 512

CHROMA-D SWIR 2k x 512 & 2k x 1k

From Institutional Space to Commercial Space

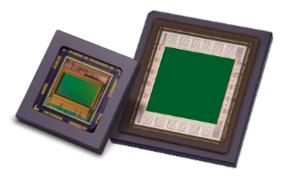

Bringing Space imaging Experience to Commercial Space

Commercial space market driving new and emerging developments in earth observation

- Simplification and standardisation of radiation hard existing space products
- Upscreening and upgrading of COTS industrial sensors
- Offering sub-system solutions to simplify payload integration

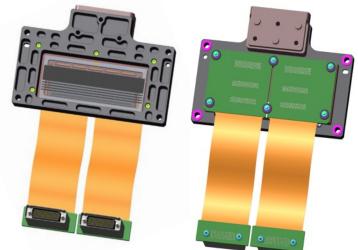
Teledyne e2v CIS120 general purpose space imager:

- 2k x 2k 10μm format, radiation hard image sensor
- Different variants Electro-optical, coatings, packages, foundry
 - CIS120^{LN} Low Noise TRL6
 - CIS120^{LS} Large Signal TRL6
 - CIS120^{XLS} Extra Large Signal TRL9
- CIS120 selected for Copernicus CO2M
- CIS120^{XLS} variant selected for standardisation


Standard ceramic package

Sealed Peltier package

Teledyne e2v Machine Vision industrial imagers:


- Specific detectors selected from wide range available
 - Emerald, Emerald Gen2, Ruby5.5
- Produce qualification report (environmental & radiation)
- Batch testing on lots to provide product assurance
- Optional screening LAT as required by Customer

Sub-System Developments

Payload Solutions

Detector & Focal Plane Arrays

Teledyne e2v CIS125 FPA & harness concept

Front-End Electronics

Based on Teledyne e2v FEE roadmap for both institutional and commercial approaches

Compatible with range of Optical Partners

Optics

Front-End Electronics with Data Processing

Data Processing & Handling Unit

Data Handling Units

Based on Teledyne e2v Semiconductor processor technology

Qormino Processing Module

Teledyne e2v
Space Imaging

Future Opportunities

Predicted Impacts of New Technologies

- Enabling New Missions through
 - High performance space detectors
 - High spatial & spectral resolution
 - Commercial space detector solutions
- Global growth in UK export of Earth Observation
 institutional and commercial space
- FEE solutions to simplify payload integration
- Distributed data processing solutions
- New solutions through collaboration

