Spaceborne lidar missions

NASA LITE: 1994

Technology demonstrator

NASA ICESat/GLAS: 2003-2009

Ice elevation and volume

NASA Calipso/CALIOP: 2006-2023

Cloud profiles

NASA CATS: 2015-2017

Cloud profiles

ESA Aeolus/ALADIN: 2018-2023

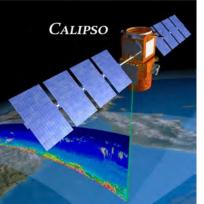
3D wind speed

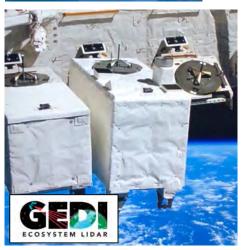
NASA ICESat-2/ATLAS: 2018-

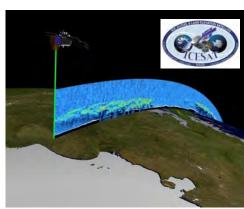
Ice elevation and volume

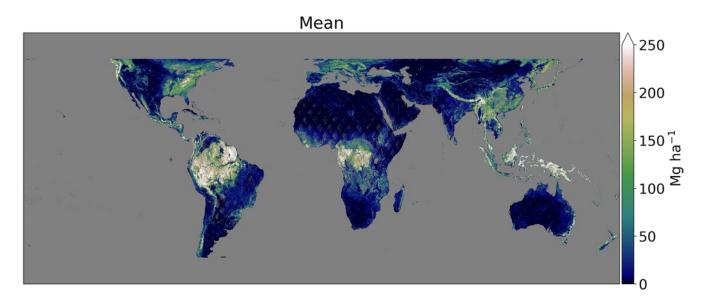
NASA GEDI: 2018-2023

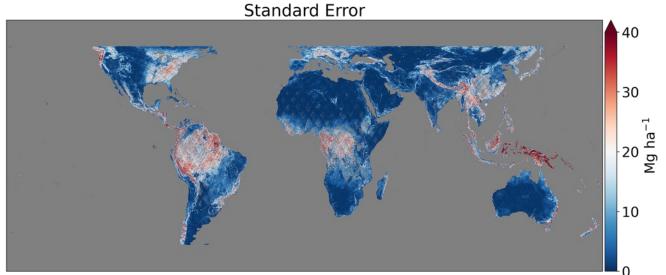
Forest biomass and structure


CNSA TECIS: 2022- (?)


Dual wavelength





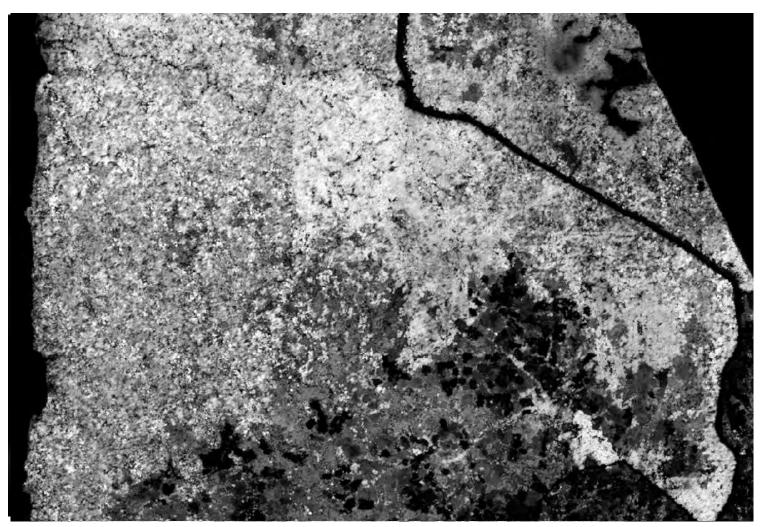


Lidar coverage

Sparse coverage limits applications

Coarse resolution inference (forests, ice mass)

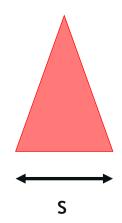
Too coarse to allow


- Continuous mapping
- Flood modelling
- Anything in urban areas
- Train line monitoring
- Commercial forestry

Sparse sampling leads to uncertainty

- Complicates robust change detection
 - Satellite carbon change products not yet reliable

Bringing the world into focus


Continuous coverage satellite lidar would be...

- An incremental technology improvement
- A step change in data applications

Increasing lidar coverage

$$s = \underbrace{\frac{P_{pay}L_e}{E_{det}} \underbrace{A}_{\pi h^2} Q_p \tau^2 \frac{r^2 (R+h)^{\frac{3}{2}}}{R\sqrt{GM}}}$$

Which parts could we adjust to maximise coverage per unit cost?

- **Instrument:** Laser and detector efficiencies improved with new photonics?
- **Platform:** Maximise payload power and telescope area per unit cost?
- **Processing:** Reduce energy requirements with signal processing?

ROYAL SOCIETY **OPEN SCIENCE**

royalsocietypublishing.org/journal/rsos

Research

Cite this article: Hancock S. McGrath C. Lowe C wall-to-wall coverage. R. Soc. Open Sci. 8:

https://doi.org/10.1098/rsos.211166

Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage

Steven Hancock¹ Ciara McGrath² Christopher Lowe²

²Applied Space Technology Laboratory (ApSTL), Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George St, Glasgow G1 1XW, UK

SH, 0000-0001-5659-6964; CM, 0000-0002-7540-7476

-	ven maneoc	W , C	ara i	riculatii ,	Citiscopiici	LOWL ,	
n	Davenport	and	lain	Woodho	use ¹		
ho	ol of Geosciences	Universit	v of Fdi	inburgh, Crew I	Building Edinburgh	FH9 3FF. UK	

