
GLAMIS: Laser source

GLAMIS: Constellation

20%

Characteristic	Value	relative intensity
Altitude	500 km	o
Beam footprint	30 m	
Peak power (per laser)	>= 8W	100
Pulse length	<= 33 ns	
Average power (per laser)	0.26 W	200
Laser	diode laser, ~ 850 nm	Distance / m
Laser efficiency	>= 10%	a a a a a a a a a a a a a a a a a a a
Detector efficiency	58%	
Payload power	120 W	41
Telescope diameter	58 cm	
Number of lasers	30	Acta Astronautica 214 (2024) 809–816 ntents lists available at ScienceDirect
Swath width	900 m (4.5 km if 20% sa	
Spatial coverage Number	of satellites	ELSEVIER journal homepage: www.elsevier.com/locate/actaastro
<u>5 year rep</u>	Deat <u>Annual repeat</u>	Research Paper
100% 1	6	Spacecraft and optics design considerations for a spaceborne lidar mission

2

0

Spacecraft and optics design considerations for a spaceborne lidar mission with spatially continuous global coverage

Christopher John Lowe^a, Ciara Norah McGrath^b, Steven Hancock^c, Ian Davenport^{c,g}, Stephen Todd^d, Johannes Hansen^{c,f}, Iain Woodhouse^c, Callum Norrie^e, Malcolm Macdonald^{a,*}

GLAMIS: CEOI-15

Instrument requirements and data processing

- Validate noise model and update instrument performance definition if needed
- Algorithm development make spatial algorithms robust and determine energy saving possible

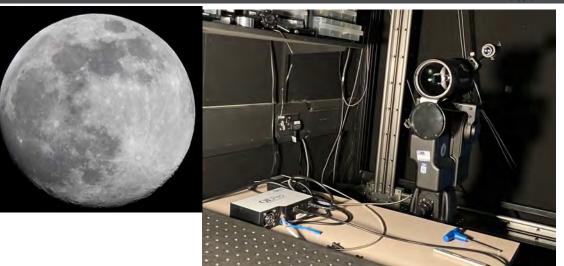
Transmitter laser module development

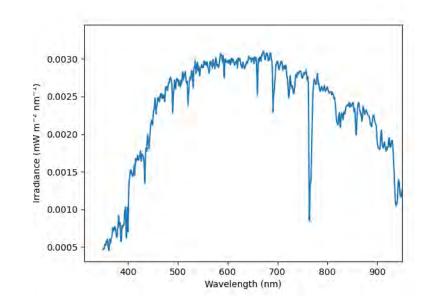
- Increase the combined laser and driver efficiency to at least 10%, with a focus on the driver efficiency
- Package the laser and attach fibre
- Raise TRL from 3 to 4.

Instrument optical model

- Produce the instrument design needed
- Confirm the size and weight needs.

Route to launch and operation

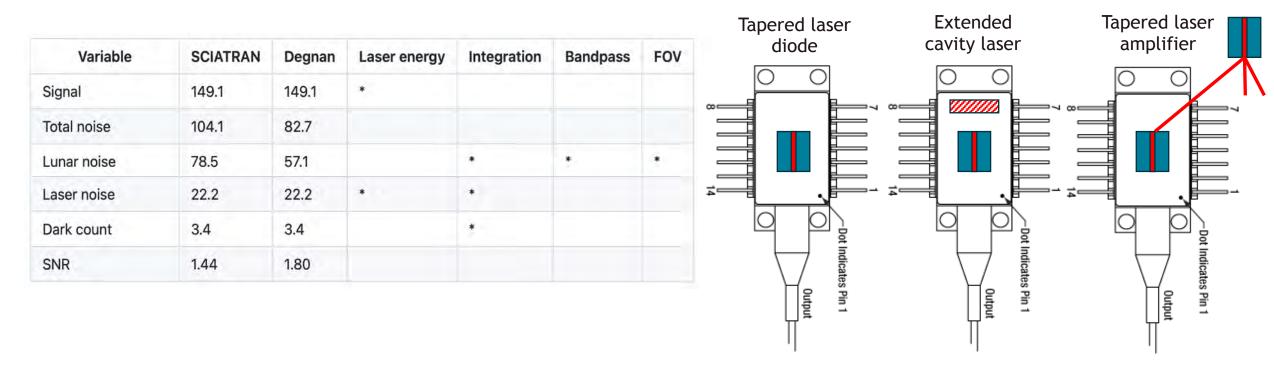

- System cost and model
- Scientific and commercial impact


Noise model validation

Validate lunar irradiance

- Full moon measured
- For a 5 nm bandpass filter centred on 850 nm
 - Surface lunar power of 0.013 mW m⁻²
 - Modelled result = 0.0126 mW m⁻² (at ground level)
- With thanks to Ross Donaldson and Cameron Simmons of Herriot-Watt
- For GLAMIS's 500 km altitude, 58 cm diameter telescope, 58% efficient detector, 50% surface reflectance, 80% atmospheric transmission and 4.25 ms integration time
 - 52 lunar noise photons per pixel

Updated instrument requirements

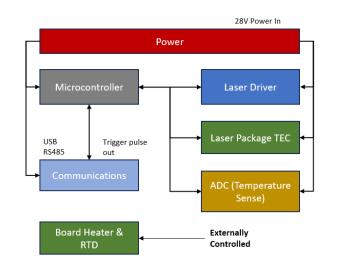

What can be adjusted in the instrument?

- Increase laser peak power
- Reduce detector fov footprint
- Reduce bandpass filter

- Currently 5 nm.

- Currently max 20 W output

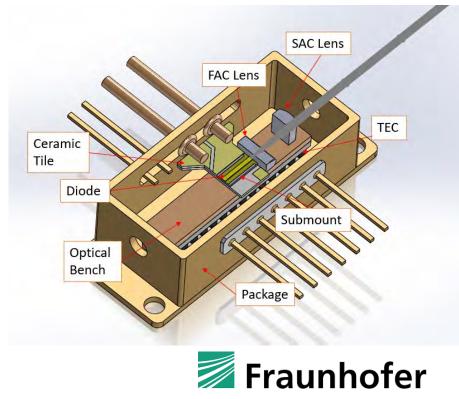
- Reduce the integration time (PRR) Currently 4.25 ms from 500 km
- Reduce signal strength requirements Currently 115 signal photons with SNR=20


- Currently 60 m diameter for 30 m laser footprint

CEOI-15: Laser driver

C520 Driver Overview

- 28V satellite power input.
- Laser driver tested and controllable as discussed.
- Laser driver current and voltage monitor to calculate efficiency.
- TEC control available for tapered diode package with current and voltage monitor.
- Power connection available for board (with RTD) for cold start condition.
- 50 Ohm SMA pulse out (matching trigger pulse width) for time-of-flight and laser calibration.
- USB and RS485 communications for SCPI commands. 14


Laser packaging

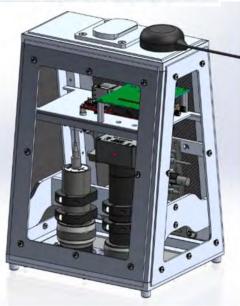
WP3320 - MECHANICAL DESIGN MECHANICAL DESIGN REV 1

Diode Packaging design

- The design began with a thermal analysis
 - For this design we use a TEC
 - An efficient thermal path is essential
 - Solders used for all attaches bar lenses
- Electrical path is designed for low inductance
 - Ribbon bonds
 - Anode/cathode at the same side
 - Avoiding loop profiles as much as possible
- We leave real estate for a self-seeding path if needed

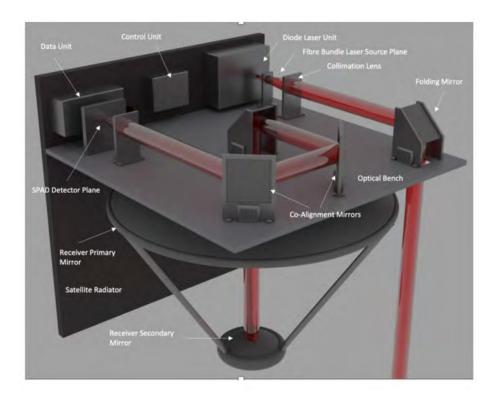
CAP

Parallel projects



Build a UAV demonstrator of the pulse-train lidar

- Validate pulse train modality lidar in the field
- Designed to match satellite SNR


Parameter	Value	Notes
Footprint D	12.6 cm	
Telescope D	3-5 cm	Possibly 3 cm
Optical efficiency	70 %	
		277
Wavelength	808 nm	
Max power	250 mW	Currently 100 mW
Energy per pulse	100 mW	
Pulse duration	1.5 ns	Running at 5 ns
PRR	4 MHz	Running at 1 MHz
Dark count	300 cps	
Bandpass filter	5 nm	Ongoing
Q	20%	For SPAD option
Q	13%	For MPPS option

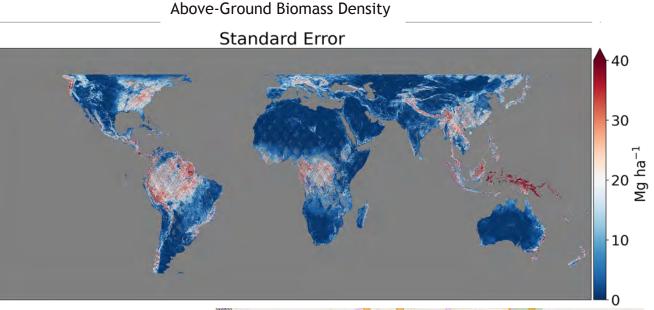
tform	Туре	Rate
V	Signal	1.11 photons/shot
	Dark count	0.0003 photons/shot
	Background day	766 photons/shot
	Background night	0.0019 photons/shot
tellite S	Signal	0.012 photons/shot
	Dark count	0.0008 photons/shot
	Background day	542 photons/shot
3	Background night	0.0014 photons/shot

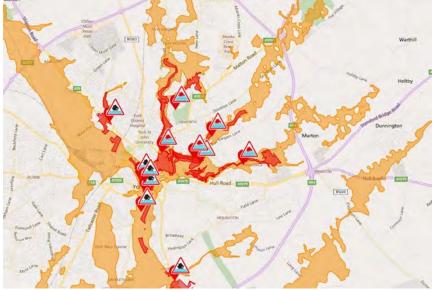
Preliminary instrument design and formalise user requirements

- Systems engineering approach to whole instrument
- Community engagement to finalise carbon change data requirements

Getting GLAMIS into space

There are no globally continuous lidar datasets


• There is no long-term (decadal) lidar dataset


To get to launch, it is required to:

- Diode + driver efficiency raised to at least 10%
- Instrument performance requirements finalised (noise)
- Meet instrument performance requirement
- Instrument design
- 20% or 100% sampling decided (or configurable?)
- TRL raised to 6
- Satellite platform selected (maximising payload power and telescope area)
- Funding to launch identified (1 demonstrator then constellation)

It would be desirable to have

- More efficient detector
- Deployable optics

