ADVANCES IN LASERS FOR SPACE-BASED SENSING

J. Thomas, E. Le-Francois, Y. Shao, B. Jones, A. Anwar, C. Hunter, L. McKnight, A. Selyem, S. McCarthy, A. Lagatsky, P. Schlosser, & G. Bonner

Fraunhofer Centre for Applied Photonics, Fraunhofer UK Research Ltd., Glasgow, United Kingdom

Fraunhofer Centre for Applied Photonics

- Founded in 2012 in Glasgow, Scotland, UK
 - Non-for-profit RTO
 - Part of the Fraunhofer network
- 65 staff including 25 PhD/EngD students
- Supporting industry
 - Contract R&D
 - Innovations in photonics
 - >100 funded company partners
- Two Business Units
 - Laser and Laser Systems
 - Quantum Technologies

GLAMIS - Overview

- Global Lidar Altimetry Mission presents a threefold challenge in terms of source development:
 - Laser pulse power is required to be strong enough to penetrate atmosphere and high degree of foliage cover to detect ground level.
 - Laser pulses need to be repetitive enough to take sufficient data points when coupled to satellite motion.

- Lasers need to be of relevant efficiency and scale to present multiple parallel recording points.
- Solid-state lasers provide means to achieve this but sacrifice SWaP considerations.

GLAMIS – Source development

- Aim to use small form factor and high efficiency diode laser sources.
- Tapered diodes can provide high optical powers > 3 W c/w whilst maintaining good beam quality.
- LiDAR operation in pulse train mode to allow for more modest peak powers.
- Proof of operation at powers beyond **20 W** peak over a duration of **20 ns** and a pulse repetition rate of **1 MHz**.
- 850 nm spectral region in compromise between atmospheric transmission and single photon detector sensitivity.
- ~ 1 GHz optical bandwidth when utilised in a MOPA configuration.

GLAMIS – Drone demonstrator phase

- Build a LiDAR unit that will demonstrate the viability of the pulse-train approach and prove simulation results
 - Confirm the background noise estimation from model
 - Pulse train LiDAR results in real environment
- LiDAR unit parameters have been 'scaled down' to match SNR estimated for the space application

Parameter	Satellite	UAV
Footprint diameter	30 m	12.6 cm
Telescope diameter	58 cm	3-5 cm
Altitude	500 km	120 m
Atmospheric transmission	0.8	~1
Surface reflectance	40%	40%
Detector efficiency	58%	15-20%
Optical efficiency	70%	70%
Wavelength	~ 850 nm	808 nm
Pulse length	~ 10 ns	Options: 10ns; 20ns; 30ns
Energy/pulse ground	107 nJ	6.4 pJ
Signal photons per laser shot	0.012	0.014
Dark count photons per laser shot	8x10 ⁻⁴ photons	3x10 ⁻⁴ photons
Day background	542 photons	766 photons
Night background	1.4x10 ⁻³ photons	1.9x10 ⁻³ photons

Use of IMU to obtain high point accuracy

GLAMIS – Drone demonstrator phase

- Transmitter telescope Beam expander
 - Laser diode (808 nm) triggered by Red-Pitaya board at 1 MHz
 - Collimated beam (0.45 mrad divergence angle)
 - Absorptive ND filter to match required SNR
- Receiver telescope
 - Bandpass filter (5 nm bandwidth)
 - Single photon detector with photon detection efficiency of 20%
- Home-made time tagger with FPGA board Red Pitaya
 - Decode the UTC, geolocation and Euler angle (Roll/pitch/yaw) data from the GNSS/IMU module
 - Process the measured timestamps from TCSPC (20 ps timing resolution)
 - Integrate and log the TCSPC and GNSS/IMU data into an on-board SD card
 - Synchronise TCSPC with the PPS of the GNSS/IMU module.
- LiDAR unit is currently being classified as Class 1
- Flight test will start mid-April

Characterisation of Faint-Pulse-Sources for QKD Motivation

- Aim is secure quantum communication on a global scale:
- Ground based QKD channels
 - Currently limited to 100'ds of km
 - Quantum repeaters not viable technology yet
- Satellite based QKD combined with free space laser communication
 - Can overcome this limit
 - Compatible with small satellite environments (transmitter/receiver optics)
 - Potential to provide necessary bandwidth
 - Key-exchange in single overpass
 - Longer keys, higher security / More keys (GHz)

MICIUS Mission

Decoy state BB84 protocol 8 fibre-based laser diodes 850 nm, 100 MHz, 0.2ns kHz-key-rate Up to 1200 km distance

S. K. Liao *et al.*, *Nature*, vol. 549, no. 7670, pp. 43–47, Sep. 2017, doi: 10.1038/nature23655

P. Schlosser¹, Y. Shao¹, Abdullah Asmari², Alex Koehler-Sidki² & Loyd M. McKnight¹

1) Fraunhofer Centre for Applied Photonics, Fraunhofer UK Research Ltd., Glasgow, United Kingdom 2) Arqit Quantum Inc., London, United Kingdom

Motivation

- Requirement of suitable **faint pulse sources** for the transmission of the quantum key
 - Compact, low SWaP systems suitable for satellite environments
 - Commercially available (COTS)
 - Operation near 850 nm
 - Direct modulation bandwidth > 1 GHz
 - Difficult to achieve in commercial laser diodes architectures.
- Investigation of two different approaches
 - Externally modulated DFB lasers
 - Gain-switched VCSELs

Investigated parameters

- Single frequency operation
- Single spatial mode & SMSR
- Output power stability
- Polarisation stability: PER & DOP
- Pulse duration: τ_{FWHM}
- Optical Extinction Ratio: ER
- Pulse-to-pulse characteristics
 - Jitter
 - Amplitude
 - Pulse-to-pulse coherence:

- External modulation
- Commercially more mature
- Expensive, larger footprint, higher power requirements
- Challenges of maintaining ER, PER, DOP at high repetition rates

Gain-switched VCSELs

- High performance maintained in the low GHz regime up to 3 GHz:
- Supply chain (quality, repeatability)
- Multiple lasers required in
- Bandwidth limited by ESD protection diode

ARC

Fraunhofer

Entangled Photon Sources for Satellite Quantum Communications

NextSTEPS (Next Generations Space Entangled Photon Source): Development of a miniaturized polarization entangled photon pair source for the application to satellite mediated quantum communications.

□ Collaboration with Craft Prospect and Alter Technology

□ Spontaneous parametric down-conversion sources with typical photon-pair detection of > 500,000 pairs/s for 1 mW of pump power, and heralding efficiencies of ~ 20%.

□ Source designs with higher functional stability and non-critical alignment tolerances.

Engineering SDL systems for single-frequency applications 6s ³S **Motivation** 5p ¹P₁ 089 nu Loss Repump 2 Repump 1 4d ¹D₂ 679 nm 707 nm Blue MOT Development of a stable laser for 1st Stage 461 nm 5p Red MOT Strontium cooling 689 nm **Clock transition** 698 nm

 $5s_2 S_0^1 S_0$

- Direct emission in the blue not available
- Based on a Semiconductor Disk Laser (SDL)
 - Fundamental operation in the near IR
 - f_{922 nm} = 325.2520 THz (NPL, PTB)
 - Intra-cavity second harmonic generation

Sr first stage cooling	
461 nm ~ 650.5036 THz	
⁸⁷ Sr; ¹ S ₀ → ¹ P ₁	
>150 mW	
<1 MHz	
<1 MHz in 24 h	
>400 MHz in 10 s	
Max 4 fibre coupling units, 2 delivering > 50 mW each; FC/APC connectors	
13 kg	
11	
> 3 years	

Selected System Target Parameters

SDL system

- Dimensions:
 - H = 145 mm, W = 250 mm, L = 300 mm
 - V < 11 I
- Weight:
 - 13 kg (4 kg laser head)
 - Including controllers (temp and LD)
- Fundamental IR outputs x2
 - for locking and monitoring
- Frequency doubled blue outputs x2
 - Fibre coupled

SDL performance

- Single frequency operation:
 - Side-of-fringe, power spectral density linewidth < 500kHz</p>

(7H/2H)

a 10

Jocial Do

5 10

127 kHz

- Target Frequency
 - 325.2520 THz using Wavelength meter (HighFinesse)
 - Free running stable emission over hours
- Locked to Fabry-Perot Interferometer (FPI100)
 - Manual fine-tuning range ~ 1 MHz
 - Within < 10 s
 - > 24 hour mode-hop free locking
 - Readjustment of FPI100 to compensate for drift
- Total blue power P_{461nm} > 60 mW

325 252

325.2524

325.2523

Advanced solid-state laser technology for Neutral Strontium Optical Clock **Standards in Space**

M. Takamoto, et al. "An optical lattice clock," Nature 435, 321 (2005)

🗾 Fraunhofer UK

High Power and High Spectral Purity Lattice Laser at 813 nm: key technical features

- mm-size laser cavity architecture with unique combination of features
- Single-longitudinal-mode operation is supported by an ultra-narrow volume Bragg grating
- > 0.7 W output power sufficient for trapping and cooling of neutral strontium atoms
- 170 kHz linewidth when locked to an external reference cavity
- Fully tested with laboratory strontium clock system
- The system shows a significant reduction in size weight and power over alternative approaches, being suitable for further deployment in space.

For more information please see Opt. Lett. **47**, 2995 (2022)

Ultra-compact femtosecond Ti:sapphire laser based frequency comb source

- Diode-pumped ultrafast Ti:sapphire
- 37-fs pulses, 0.6 GHz repetition rate
- 0.8 W average power

Photonic Crystal Fiber

Octave-spanning supercontinuum

Optical systems for atom sensor systems

- Novel source and light delivery approaches
- Working with collaborators to develop prototype atom sensor systems

- Projects on many topics including
 - Gravity gradient

Cold-atom clocks

Magnetometers

Inertial sensing

Tunafish: Fibre-coupled rubidium- and offset-locked laser system.

Quantico: 852 nm, 1470 nm and 843 nm stabilised laser system for THz detection.

Pioneer Gravity: interferometry laser trapping 3.4 E8 atoms

Optical systems for atom sensor systems

- We help develop and use high TRL subsystems and components to shrink large systems
- Laser systems engineered for portability (SWaP) and robustness – some systems qualified for flight, most are operated outside the lab
- Complex, comprehensive 19" rack mountable laser systems for atom interferometry and BEC sensors
 - ~10 switchable outputs, >60 dB extinction
 - 10 350 mW stabilised output power per channel
 - <100 kHz linewidth (where needed)</p>
 - Agile frequencies tunability
 - Operation in real-world environments

