

RAL Space

Rutherford Appleton Laboratory Space Science & Technology Department

Multiplexed LHR for atmospheric composition sounding (Mux-LHR)

Damien Weidmann

Outline

§ Rationale

- State of the art : HIROS
- § Emerging : Mux LHR
 § Description / roadmap
- § Conclusion

Atmospheric composition sounding

- § 4D observation of atmospheric constituents
 - § GHG, AQ, NWP, climate and chemistry studies
- § Focus on thermal IR (LWIR 8-12 um)
 - § Thermal emission (contrast between surface and constituents)
 - § Fundamental ro-vibrational bands ("fingerprint")
 - **§** Lineshape resolution gives height resolution

Credit: https://www.encyclope die-environnement.org/

Thermal IR sounders

Nadir : priority to horizontal resolution

Size - Mass - Cost

Science and Technology Facilities Council

Laser Heterodyne spectro-Radiometry (LHR)

RAL Space

in "Advances in Spectroscopic Monitoring of the Atmosphere", W. Chen, D.S. Venables, M.W. Sigrist (Eds), pages 159-223, Elsevier, 2021. doi: <u>10.1016/B978-0-12-815014-6.00005-1</u>

Uniqueness & Combined Advantages

§ Radiometric precision

§ Signal to Noise Ratio : ideally shot noise limited

$$SNR = rac{h \cdot
u \cdot \kappa \cdot \sqrt{rac{2B \cdot au}{\pi^2}}}{\exp \left(rac{h \cdot
u}{k \cdot T_{BB}}
ight) - 1} \cdot rac{1}{rac{h \cdot
u}{\eta_d} + rac{A}{2P_{LO} \cdot {D^*}^2}}$$

- § High spatial resolution
 - **§** Coherent FoV

$$\left\langle i_{IF}^{2}\left(t
ight)
ight
angle =2e^{2}{\left|\int\eta\left(\mathbf{r}
ight)\cdot\mathbf{E_{S}}\left(\mathbf{r}
ight)\cdot\mathbf{E_{LO}^{*}}\left(\mathbf{r}
ight)\cdot\mathbf{dr}
ight|^{2}}$$

- § High spectral resolution
 - § Spectral analysis in the RF domain
- § Other system benefits
 - § Size, Stable spectral response

RAL Space

Technology **Facilities** Council

LHR maturation from ground to space

Ozone: 9.7 um

H2O, CO2, CH4 : 10.6, 7.7 um

RAL Space

Facilities Council

HW hybrid integration

SOLSTICE mission – **HIROS** payload

Solar Occultation Limb Sounding Transformative Instruments for Climate Exploration

- § High accuracy high vertical resolution atmospheric composition
- § Complement to Nadir missions
- § Constellation coverage
- § Highly versatile / configurable
- § Productized
- § Plug and play scientific payload
- § Microsat compatible

High resolution InfraRed Occultation Spectrometer

1 km inst. FoV - Volume <1.5 U - Mass < 2 kg 0.01 cm⁻¹ res. - 1 cm⁻¹ narrow windows - SNR ~ 140

HIROS Development Status

Integrated LHR block tested and functional. Projected SNR with solar input of 140.

Photomixer in development and testing. Integrate preamp and RF chain.

QCL digital controller for space application

- Absolute frequency stability 9x10⁻⁴ cm⁻¹ over 30 min
- Relative stability 4x10⁻⁵ cm⁻¹

Front end telescope 25 mm aperture

HIROS HW board under tests for vibrations and shock 75G @100 Hz 1000G >1kHz.

Facilities Council

Next and emerging: Multiplexed LHR

Front end: need for speed

- Sesonant optical cavity photodiode (3 GHz)
 - § LN2 cooling
- § Immersed lens photodiode (1.5 GHz)
 - § Thermoelectric cooling

Science and Technology Facilities Council

- § Plasmon assisted antenna coupled (>1THz)
 - **§** Room temperature
 - § Optical pumping

Wang et al., 2019

§ Quantum well arrays (>50 GHz)

§ Room temperature

Palaferri et al., 2018

Back end: power efficiency

Mux-LHR for NWP – IASI comparison

- § Study with the Met Office
- § Key products
 - § Water vapour in the FIR
 - § Mesospheric temperature
 - § >80 km (NWP / Space weather)
- § Best scenario identified
 - § LEO
 - § Stratospheric sounding
 - § Upper atmosphere constrain
 - § GEO
 - § Targeting sounding
 - § Extreme events

RAL Space

Science and Technology Facilities Council Received: 6 September 2017 Revised: 29 May 2018 Accepted: 1 June 2018

DOI: 10.1002/qj.3365

RESEARCH ARTICLE

Quarterly Journal of the Royal Meteorological Society

Evaluation of laser heterodyne radiometry for numerical weather prediction applications

Fiona Smith¹[©] | Stephan Havemann¹[©] | Alex Hoffmann²[©] | William Bell^{1,†} | Damien Weidmann²[©] | Stuart Newman¹

1Met Office, Exeter, UK

²Space Science and Technology Department, STFC Rutherford Appleton Laboratory, Oxfordshire, UK

Correspondence

Damien Weidmann, Space Science & Technology Department, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK.

Email: damien.weidmann@stfc.ac.uk

Fiona Smith, Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, UK. Email: fiona.smith@metoffice.gov.uk [†]Present address European Centre for Medium-Range Weather Forecasts, Shinfield Park,

Reading, RG2 9AX, UK. Funding information Science and Technology Facilities Council, ST/M007154/1.

This article reports the results of a preliminary mission study to assess the potential of space-borne laser heterodyne radiometry (LHR) for the remote sensing of temperature for assimilation in a numerical weather prediction (NWP) model. The LHR instruments are low cost and small in size, lending themselves to a wide variety of satellite platforms. The impact of different configurations of an idealized LHR instrument is assessed against the Infrared Atmospheric Sounding Interferometer (IASI), via single-column linear information content analysis, using inputs consistent with the background errors of the Met Office 4D-Var assimilation system. Multiplexed configurations give promising results, in particular for sounding of upper-atmospheric temperatures.

KEYWORDS

DFS, IASI, information content, laser heterodyne radiometer, numerical weather prediction, temperature sounding, upper atmosphere

Conclusion & Forward Look

- **§** Need for atmospheric composition sounding is growing
 - § More resolutions, more products and applications
 - **§** TIR LHRs have unique benefits
 - § Opportunity for smallsat-enabled novel data products
 - § operational
 - § Scientific
 - § Opportunity to lead in this area
- § LHR technology being implemented for solar occultation limb sounding through the SOLSTICE mission
- § Mux LHR to unlock nadir and emission limb sounding applications
 - **§** Strong subsystem commonalities with LHR
 - § Inherit good heritage from mmW receivers

§ Vision

- § To achieve 70% of what a large scale mission achieves at less than 1/10th of the cost
- § To allow novel versatile composition sounding approach and associated products

