

Introduction to UV-Vis Spectrometry Techniques From Space

Christopher Whyte Earth Observation Science Group Department of Physics and Astronomy Space Research Centre University of Leicester

www.leos.le.ac.uk

Introduction

 First atmospheric chemistry observations made from space over 30 years ago

Introduction

- First atmospheric chemistry observations made from space over 30 years ago
- Solar radiation passing through the atmosphere can undergo many different processes
 - Absorption, Scattering, Reflection, Transmission

Measuring Atmospheric Gases from Space

- Absorbing gases can be identified and quantified from spectrally resolved measurements of the radiation
- From space this can be achieved by measuring the radiation that is reflected/scattered from sunlight in the atmosphere in the UV - visible - NIR - SWIR range
- By observing radiation at particular spectral wavelengths can focus on particular gases of interest

Detecting Atmospheric Gases - DOAS

- DOAS Differential Optical Absorption
 Spectroscopy
- Based on the measurement of absorption of radiation in the open atmosphere
- Many wavelengths are used simultaneously
- Each gas identified though unique absorption cross section
- Several absorbers can be retrieved at the same, some overlap of species

DOAS - In Detail

• Back to basics - the Beer Lambert law quantitatively describes absorption of radiation $I(\lambda) = I_0(\lambda) \exp[-L \ \Sigma \sigma_i(\lambda) n_i]$

-L = path length / cm,

- $\sigma(\lambda)$ = absorption cross section, also dependent upon temperature and pressure / cm² molecules⁻¹

-n = number density /molecules cm⁻³

DOAS - In Detail

• Back to basics - the Beer Lambert law quantitatively describes absorption of radiation $I(\lambda) = I_0(\lambda) \exp[-L \ \Sigma \sigma_i(\lambda) n_i]$

-L = path length / cm,

- $\sigma(\lambda)$ = absorption cross section, also dependent upon temperature and pressure / cm² molecules⁻¹

-n = number density /molecules cm⁻³

• Optical depth $\tau(\lambda) = L\sigma(\lambda)n$, can be used to provide good estimation of concentration

$$\tau(\lambda) = ln \left[\frac{I_0(\lambda)}{I(\lambda)} \right]$$

DOAS - Atmospheric Considerations

- Does not account for losses (extinction) processes other than absorption - Scattering
 - Rayleigh scattering: scattering by particles smaller than the wavelength of radiation
 - Mie scattering: scattering by particles similar or larger in size than the wavelength of radiation, e.g. aerosol particles
- Account for scattering by considering as pseudo-absorption process with their own cross sections
- Extinction coefficients

 $\varepsilon_{R} = \sigma_{R}(\lambda) n_{air}$ $\varepsilon_{M} = \sigma_{M}(\lambda) n_{air}$

$$I(\lambda) = I_0(\lambda) \times exp\left[-L\left(\sum_i (\sigma_i(\lambda)n_i) + \varepsilon_R(\lambda) + \varepsilon_M(\lambda)\right)\right]$$

- *I*₀(λ) is difficult to measure in the atmosphere instead measure the differential absorption
- Defined as the part of the total absorption of any molecule that rapidly varies with the wavelength
- Processes such as scattering produce a 'slow' variation in the radiance with wavelength

 $I(\lambda) = I_0(\lambda) \times exp\left[-L\left(\sum_i (\sigma_i(\lambda)n_i) + \varepsilon_R(\lambda) + \varepsilon_M(\lambda)\right)\right]$

- $I_0(\lambda)$ is difficult to measure in the atmosphere instead measure the differential absorption
- Defined as the part of the total absorption of any molecule that rapidly varies with the wavelength
- Molecular absorption features sharply defined -'rapid' variation with wavelength

- To accurately pick out these features in atmospheric spectra requires a high sampling wavelength interval and high resolution
- Using this system the absorption cross section and intensity will be split into two portions

- To accurately pick out these features in atmospheric spectra requires a high sampling wavelength interval and high resolution
- Using this system the absorption cross section and intensity will be split into two portions

Differential Absorption • Equation becomes: $I(\lambda) = I_0(\lambda) \times exp\left[-L\left(\sum_i \sigma'_i(\lambda)n_i\right)\right] \times exp\left[-L\left(\sum_i \sigma_{i0}(\lambda)n_i + \varepsilon_R(\lambda) + \varepsilon_M(\lambda)\right)\right] \times A(\lambda)$ Rapid Slow where $I'_{0}(\lambda) = I_{0}(\lambda) \times exp\left[-L\left(\sum_{i}\sigma_{i0}(\lambda)n_{i} + \varepsilon_{R}(\lambda) + \varepsilon_{M}(\lambda)\right)\right] \times A(\lambda)$

• Can determine $I'_0(\lambda)$ from atmospheric spectrum by removing the absorption features, either through using a polynomial fit, digital smoothing or a Fourier transform of the measured intensity $I(\lambda)$

Solar Spectrum

Determining Concentration

The optical depth can then be determined

$$\tau'(\lambda) = ln\left(\frac{I'_0(\lambda)}{I(\lambda)}\right) = L\sum_i \sigma'_i(\lambda) n_i$$

- The amount of absorbing gas molecules can be estimated directly from the optical depth $\tau'_i(\lambda) \approx \sigma'_i(\bar{T}, \bar{p}) \times SCD$
- SCD is the slant column density the number of molecules per area along the path from the Sun to the instrument $SCD = \int_{-\infty}^{\lambda} n(\lambda) d\lambda \quad [\text{molecules cm}^{-2}]$

DOAS Instrumentation - grating spectrometer

 Grating
 Spectrometer standard Offner array

DOAS Instrumentation - grating spectrometer

CCD - detector

Focusing mirror

Advanced Instrumentation

- Compact mass spectrometers lighter, less optical components
- Example: concentric spectrometer: CompAQS
- C Whyte *et al*

Atmos. Meas. Tech., 2, 789-800, 2009

GOME instrument on ERS-2

SCIAMACHY on Envisat

Instrument Line Shape

- Instrument feature shape of a singly resolved spectral element made up of a varying number of measurements
- FWHM of shape resolution
- Number of measurements defining one resolved element oversampling
 FWHM = 0.5 nm
- 5 pixel oversampling
- Sampling interval
 0.1nm

Instrument Line Shape

- Instrument feature shape of a singly resolved spectral element made up of a varying number of measurements
- FWHM of shape resolution
- Number of measurements defining one resolved element oversampling
 FWHM = 0.8 nm
- 3 pixel oversampling
- Sampling interval
 0.26nm

CompAQS example spectrum

Spatial Resolution

- High spatial resolution desirable
- A smaller spatial resolution will increase the number of cloud free pixels - scenes not obscured by cloud
- Approach urban scale assessment of local air quality and monitor transport across urban centres
- Practical application to the real world, e.g. AirText service provides local forecasting for AQ in London

Satellite Viewing Geometries

Low Earth Orbit

- A sun-synchronous orbit crosses the equator at the same local time each day
- Allows consistent scientific observations as the angle of sunlight on the Earth's surface remains relatively constant seasonal variation
 - Nadir observes either emission or backscattered radiation
 - Measure total column of absorbing gases
 - Global coverage

Satellite Viewing Geometries

Atmospheric Gases: Nitrogen Dioxide

- Major air pollutant originating mostly from the combustion of fossil fuels (vehicle emissions)
- Source of ground level ozone, plays vital role in formation of tropospheric ozone and aerosols
- Potent lung irritant with known health implications
- Tropospheric (near-surface) amount of NO₂ can be measured by UV/Vis satellite instrument due to their sensitivity to the whole atmospheric column

Global Measurement of NO₂

Nitrogen Dioxide over Europe

