

HighRes: Laboratory Validation of a Deployable CubeSat Concept for High-Resolution EO

Noah Schwartz, David Pearson, Stephen Todd, Maria Milanova, William Brzozowski, Andy Vick, David Lunney, Donald MacLeod, Steve Greenland, Jean-François Sauvage, Ben Gore

What is a CubeSat?

CubeSat

Astronomy Technology Centre

- Affordable satellites using standardised parts
- Made of multiple cubic units "U"
 - 1U = 10x10x10 cm³ & 1U < 1.33 kg</p>
- Ideal solution to develop new space technologies
 - Cost effective & short development cycle
 - Experiment, technology demonstrators, derisking missions...
 - Launches by companies (>50%), space agencies (5%), military (4%)

High Resolution

High-level specifications for HighRes

- ~1m resolution imaging platform
- 3U satellite (2U optical payload)
- Panchromatic imaging system: approx. 450-800 nm
- > Diffraction limited imaging with $D \approx 300 \text{ mm}$

Targeted Applications

- EO applications
 - Security (e.g. border, humanitarian)
 - Disaster monitoring (e.g. earthquakes)
 - Constellations for global coverage for very low cost
 - High resolution and high temporal imagery complementary to Copernicus
- Astronomy

e & Technology Facilities Council Astronomy Technology Centre

- "Under-explored" spectral windows by avoiding the strong atmospheric absorption bands
- Observation for long continuous period of time (e.g. >1yr)
- Potential applications
 - Space situational awareness, Free-Space optics, solar system science

Slide 3

Why do we want a deployable CubeSat?

- Optical aperture size determines
 - Light collecting area
 - Diffraction limited resolution

Angular resolution

Diameter of aperture

wavelength

- 3U CubeSat
 - ➤ Limited to 9-10 cm apertures
 - Deploy optics to increase resolution

2.1 m resolution

 $\Delta \theta$

Deployable CubeSat concept

- Deployable telescope
 - Not new concept (James Webb Space Telescope)
 - Not yet fully validated in space
 - Deployable telescope on small is an innovation of HighRes
- Mirror segment co-phasing: Need tens of nm accuracy for diffraction limited imaging
 - Accurate deployment

Astronomy Technology Centre

- Active alignment control mechanisms
- Algorithms to monitor and control alignment
- Can we achieve ~300mm aperture (i.e. ~1m ground resolution) in a 3U CubeSat?

Technology Demonstrator = HighRes

Two mirror telescope with refractive field corrector M1-M2 separation constrained to 200mm Exact design depends on pixel size of sensor and ground sampling distance.

NB: For bench demonstrator we place detector further back, allowing lenses to be omitted

Science & Technology Facilities Council UK Astronomy Technology Centre

Slide 6

Mechanical Design Concept

Active Optics Correction

- Control position of Primary Mirror segments
 - On point-source and extended objects
 - ➤ Large measurement/control range: ~10 µm
 - High measurement/control resolution: ~10-20 nm
 - Temporal bandwidth: < a few Hz</p>

Constraints – CubeSat

nce & Technology Facilities Council Astronomy Technology Centre

- Very limited volume available
- Limited electric & computing power

Active Optics Correction Concept

- Direct wavefront sensing ×
 - e.g. Shack-Hartmann, Pyramid...
 - Requires additional hardware & volume
- Displacement sensors ✓
 - Measures the back surface or outside of M1
- Focal plane (or image-based) sharpening ✓
 - Direct use of image
 - Iterative process

Astronomy Technology Centre

Example of PSF after deployment

Slide 9

Focal Plane Sharpening

Use detector image as input Calculate an image metric Change segment tip/tilt/piston Repeat with optimisation algorithm

Final correction quality

- Reach diffraction limit both on point-source & extended objects
- Image contrast is a very good indicator of final correction quality
- Limited impact of noise under realistic observation conditions

On-board computing possible with current technology

Laboratory Demonstrator

Key aims of demonstrator

- deployment of primary mirror segments
- manipulation and metrology of mirror segments (characterise motors and sensors)
- control using focal plane sharpening algorithms

Not in scope

- deployment or active control of secondary mirror
- not fully representative of CubeSat system

Laboratory Test Bench

- Commercial Newtonian telescope used to provide 300 mm collimated ٠ illumination.
- Light input: ٠

Science & Technology Facilities Council UK Astronomy Technology Centre

- FLCoS micro-display to project extended objects
- Single mode fibre for diffraction limited source
- Vertical setup ensures all petals see identical gravitational forces. •

cope

Performance

JK Astronomy Technology Centre

- Mirrors can be deployed accurately
- Mirror manipulated with sufficient precision to allow co-phasing
 - Large hysteresis and backlash
 - Load/displacement dependency
- Focal plane sharpening can be used to control co-phasing on realistic image scenes (static)
- Issue with mirror quality and vibration to fully validate demonstrator

Deployment repeatability

Current Issues and Future Improvements

Current Developments

- New mirrors with better optical quality
- Changed setup to solve issues with vibrations and air currents
- Validating co-phasing in laboratory

Further Improvements

- Develop mechanism for secondary deployment
- Miniaturise electronics displacement sensors
- New motors (Hysteresis / backlash)
- Consider larger platforms (e.g. 6U)
- On-board active optics control
- ≻ Launch…

ee & Technology Facilities Council Astronomy Technology Centre

Summary

- Disruptive technology for EO & Astronomy
 - Miniaturisation of the opto-mechanics (fold + deploy)
 - 2. Integrates active optics within a telescope
 - 3. Implements a fully automated onboard process to align & phase the telescope.

Breakthrough in terms of performance

- Miniaturisation
 - 30 cm deployable telescope
 - Fitting in a 3U to 6U CubeSat
- Enhanced performance
 - Ground Sampling distance
 - Automation, power reduction...
- Reduced cost

JK Astronomy Technology Centre

- Use of COTS items
- Reduction of 10 expected in EO data costs

Low-cost, rapid-revisit, highresolution imaging

Impact

Technology Development Roadmap

- Time-to-market (depends on funding availability)
 - Integrate the high-value fast-growing CubeSat market within 5 years
- Strengthening UK & Europe's position in EO
 - Alternative low-cost CubeSat technology
 - Achieving very high resolution in the optical wavelengths

• Commercialisation

CubeSat market

JK Astronomy Technology Centre

- Fast growing with 500+ launches a year
- Deployable optics as COTS
 - Will ultimately provide a solution that can be adapted to different industrial uses (production and cost-efficiency).

Number of launches per yr

