

THz quantum-cascade laser systems for atmospheric research & imaging

Visible = WFPC2 = 2001

Infrared • WFC3/IR • 2014

<u>Alexander Valavanis</u> <u>a.valavanis@leeds.ac.uk</u>

- •Terahertz (THz) atmospheric & space research
- •Waveguide integrated THz QCL systems
- •Gas spectroscopy and imaging using THz self-mixing

The meeting point between optics and electronics

The meeting point between optics and electronics

Electronic oscillators

The meeting point between optics and electronics

Electronic oscillators

Optical sources (lasers, LEDs etc.)

The meeting point between optics and electronics

Properties and applications of THz waves

THz radiation highly sensitive to:

Rotational modes of gas molecules

Long-range order in crystals
> Quantum states in semiconductors /superconductors

THz gas spectroscopy

Spectral modes of several important atmospheric gases lie in THz band

THz radiation sources

Quantum-cascade lasers are the **only** compact & powerful THz sources

IMPATT – Impact Ionization Avalanche Transit-Time diode HG – Harmonic Generation RTD – Resonant-Tunnelling Diode TPO – THz Parametric Oscillator PCS – Photoconductive Switch QCL – Quantum Cascade Laser

M. Tonouchi, Nature Photonics, 1, 97 (2007)

THz quantum-cascade lasers

Epitaxially-grown GaAs/AlGaAs heterostructures within plasmonic waveguides

"Electron-recycling" process yields > 1 mW continuous-wave power in ~2-5 THz band

Institute of Microwaves and Photonics SCHOOL OF ELECTRONIC AND ELECTRICAL ENGINEERING, FACULTY OF ENGINEERING

Integrated THz systems for space applications

The LOCUS Satellite concept

"Linking observations of climate, the upper atmosphere and space weather"

Supra-THz from Space

		Designation	Band Centre	Primary Species	Secondary Species
	Ls!	Band 1	4.7 THz	0	O ₃
QCLS!		Band 2	3.5 THz	OH	CO, HO_2
		Band 3	1.1 IHz	NO, CO	H_2O, O_3
		Band 4	0.8 THz	O ₂	O ₃

LOCUS System Concept

QCLs, Schottky diode mixers & Sterling cooler on a small satellite platform

Miniature RAL cooler - courtesy Martin Crook, RAL Technology Dept.

LOCUS optical train – primary and secondary

LOCUS small satellite platform concept

LOCUS breadboard undergoing thermal vac. trial

LOCUS Core Technology

LOCUS integration design

3.5-THz QCL integrated within precision micromachined waveguide

Dual-feedhorn design

Dual-feedhorn design enables simultaneous access to **both facets** of QCL

Cryocooler integration

Operation within space-qualified Stirling cryocooler system

Beam-Pattern Measurement

Beam-profiling using raster-scanned Golay detector

Institute of Microwaves and Photonics SCHOOL OF ELECTRONIC AND ELECTRICAL ENGINEERING, FACULTY OF ENGINEERING

Imaging and spectroscopy using THz self-mixing

Self-mixing interferometry

THz feedback into a QCL perturbs the terminal

voltage - coherent detector-free sensing!

Self-mixing interferometry

Change in external reflectivity (or cavity transmission) seen in QCL voltage

Opt. Lett. 36, 2587-2589 (2011)

Confocal self-mixing imaging

THz-SM imaging gives λ ~ 100 μm resolution and provides surfacecontour profiles

A. Valavanis et al., IEEE Sensors J. **13**, 37 (2013); P. Dean *et al.*, Opt. Lett. **36**, 2587-2589 (2011),

Self-mixing interferometry

Can measure displacement (or velocity) of "hidden", moving targets in real-time

A. Valavanis *et al.*, IEEE Sensors J. **13**, p.37 (2013)

3D surface profiling

Reflectivity & surface profile can be extracted simultaneously from SM interferograms

THz near-field microscopy

Scattering from a ~1 μm tip induces a SM signal in a QCL.

Enables carrier-density mapping at microscopic scales ~λ/100.

P. Dean *et al.* IRMMW-THz, Paris (2019)

Self-mixing gas spectroscopy

Adjust QCL frequency by changing current and measure transmission through gas cell

Multi-mode QCLs give huge spectral coverage (17-GHz) that cannot be achieved using simple power measurements

Y. Han et al., Opt. Lett. **43**, p. 5933 (2018)

Summary

Postgraduate study opportunities available!

Acknowledgments

Funding acknowledgments

- •CEOI (7th, 8th and 10th call)
- •UK Space Agency and ESA
- •Royal Society & Wolfson foundation
- •STFC Centre for Instrumentation
- •UKRI Future Leaders Fellowship

Colleagues and collaborators

- •Valavanis group: Y. Han, M. Horbury,
- E. Zafar, E. Nuttall, S. Kondawar
- •Leeds THz lab (Dean, Freeman, Burnett,

Keeley, Li, Salih, Davies, Cunningham, Linfield *et al*)

•RAL Space (Ellison, Pardo, Gerber)

•University of Queensland (Rakic, Lim,

Taimre, Agnew, Han, Qi)