Novel Ultra-miniature Technology for Earth Observation and Sensing

J. Coote1, E. Woolliams2, N. Fox2, I. D. Goodyer1 and S. J. Sweeney1

1ZiNIR Ltd., The Coachmakers Business Centre, 116A Seaside, Eastbourne, East Sussex, BN22 7QP, UK; 2National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK

jo.coote@zinir.com
Introduction

- Motivation
- Spectrometer chip concept
- Design process
- Future work and prospects
“Ground Truth”: Satellite data need to be calibrated and validated with ground-based measurements.
Present: uniform area (desert)

Future: non-uniform area
(forest canopy: spectrum changes as the sun moves)
Issues with conventional spectroscopy systems

- Current spectrometers have multiple components
 - Alignment issues
 - Expensive to manufacture
 - Optical effects – loss of photons / stray light
 - Miniaturisation difficult – spectral resolution suffers as size of spectrometer is decreased
Our solution: Resonant Detector Array

Waveguide

Incoming spectrum

Microdisk resonators
Contour Map of E_y at $cT = 102.403 \, \mu m$
Our solution: Resonant Detector Array
Dispersion and detection in one absorbing layer (quantum well).

- Conduction band
- Promoted electron
- Electrons in valence band
- Valence band

Photon
Advantages

- Tiny footprint
- Low mass
- Low power consumption
- Robust:
 - Wavelength separation and detection within a single photonic element
 - No electrical or mechanically moving parts
- Fast data acquisition
- Thermally stable
- Tuneable spectral features
- Maintenance-free
- Potential for low stray light, high resolution
- Potential for wide spectral range
System requirements:

• Wavelength range: 750-1000nm (ultimate aim: 300-1000nm)

• Resolution:
 – 5-10nm (broad spectrum)
 – 0.1nm (specific spectral bands of interest)
Design Aspects

Choice of materials

Waveguide

Full chip model

Quantum well

Resonators

Input optics

Electronics

Current work

Future work
Choice of Materials

$E_g (\text{Gamma}) \text{ (eV)}$

$Al(x)Ga(y)In(1-x-y)As$

y (Fraction of Gallium)

x (Fraction of Aluminium)
Layer structure:
quantum well

- Absorbing Layer (Quantum well)
- Cap layer (p-doped)
- Cladding layer (n-doped)
- Substrate (n-doped)

Absorption spectrum TE polarised
Transition energy cb001-hh001
Barrier band gap
Waveguide Design

High index layer

Cap layer (p-doped)

Cladding layer (n-doped)

Substrate (n-doped)

Refractive index

Copyright © ZiNIR Ltd 2004-2014

National Physical Laboratory
Resonator design

Radius

Effective r.i. is fixed

Contour Map of E_y at $cT = 102.403\ \mu m$

Free Spectral Range

Intensity (output/input) vs. wavelength (λ) (nm)
Future work: input optics

Optical motherboard (UK Patent application GB2494640A)

- Housing made of semiconductor or insulator
- Groove for bare optical fibre cable
- Groove or recess for sensor (in butterfly package?)
- Mirror
Possibilities include a Quantum dot LED or a DFB laser
Future work: hyperspectral imaging
Other applications

- Biomedical science
- Environmental/remote monitoring
- Industrial quality control
- Mobile technology
Summary:
- ZiNIR’s chip-based spectrometer integrates dispersion and detection elements on a single chip
- Current application: calibration of Earth observations
- Design stages:
 - Choice of material
 - Quantum well and waveguide
 - Resonator optimisation

Future work:
- Front-end optics
- Electronics
- On-chip light source
- Hyperspectral imaging

Other applications
- Biomedical
- Remote monitoring
- Industry
- Mobile technology
EMRP for funding this project

- The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union